

Higher Efficiency and Lifetime Improvement for Gears and Bearings in Wind Turbines.

Content

- Company and Products
- Scientific tests
- Examples of applications
- Conclusion

REWITEC®

COMPANY AND PRODUCTS

- Establishment in 2003
- Developer, manufacturer and distributor of nano and micro particle based surface refinement products for the protection and the repair of tribologic systems
- Patents Europe, China, USA
- World wide sales network
- Co-Founder and Managing Partner: Stefan Bill
- Acquisition by CRODA in 2019

Target Markets

WIND ENERGY

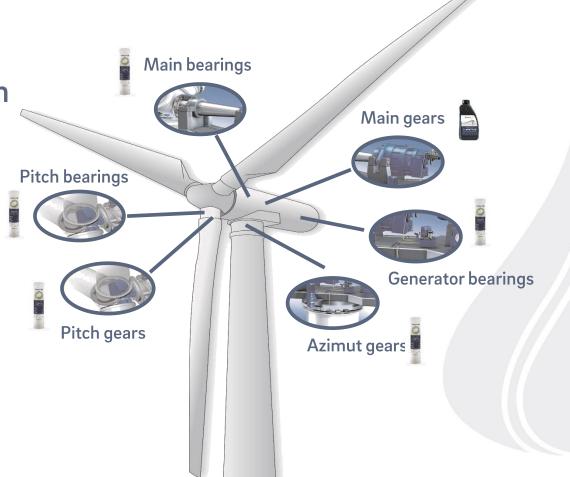
- ONSHORE
- OFFSHORE

INDUSTRY

- STEEL
 - CEMENT
- MINING
- OIL, GAS

SHIPPING

- MARINE
- INLAND
- YACHTS
- SUBMARINE



AUTOMOTIVE

- CONSUMER
- OEM
- MOTORCYCLES
- RACING
- OLDTIMER

Examples of application

Treated wind turbines

16.09.2019 REWITEC GmbH

More than 2,000 treated wind turbine gears and bearings

Turbine manufactrure r	Numbers	Type of wind turbine
AN Bonus	60	450 kW, 1.000 kW, 1.300 kW
DeWind	50	D4 (600 kW), D6 (1.000 kW), D8 (2.000 kW)
Gamesa	80	G47, G52, G8x
GE	1200	GE 1.5 sl, GE 1.6, GE 2.3, GE 3.6
Goldwind	50	750 kW
HSW	10	1.000 kW
Jacobs	10	600 kW
NEC Micon	250	600 kW, 800 kW, 1.000 kW
Nordex	300	N43, N52, N54, N60, N80, N117/2400, S70, S77
REpower	10	5M
Siemens	40	1.000 kW, 1.300 kW, 2.300 kW
Suzlon	20	Grease applications
Tacke	300	TW80, TW600, TW1.500
Vestas	400	V25, V39, V44, V47, V52, V66, V80, V90
CSIC Haizhuang	2	2.000 kW VSCF

Products

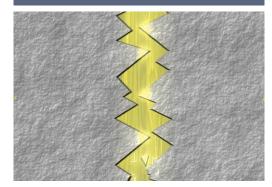
Higher Efficiency and longer Lifetime for gearbox with DuraGear® W100

EXEMPTECLonger bearing life with GR400

GR400 (standard product)

GR400 +5 (concentrate for 5 kg grease)

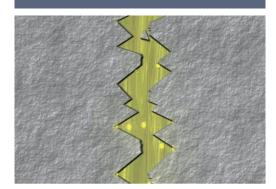
GR400 +10 (concentrate for 10 kg grease)



The coating process

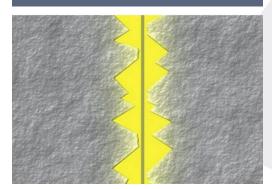
Step 1

Chemical-physical process


The product uses the lubricant as carrier to the mixed friction zones

Step 2

Chemical reaction


The coating particles ceramize the metal surfaces in mixed friction zones

Step 3

New metal-ceramic surface

Original material properties will be improved in terms of friction, temperature and wear significantly

REWITEC® IN ACTION

SCIENTIFIC TESTS

Scientific tests

Competence Center of Tribology Mannheim-Germany

2-Disc Assembly Rolling Wear Tests

Stress value:

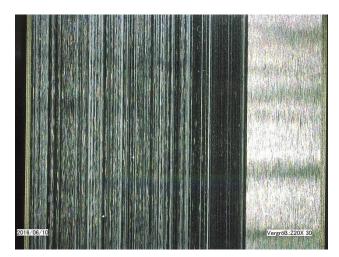
Rotating speed:

1 GPa (normal force 2150 N) 424 rpm / 339 rpm, slip 20 %

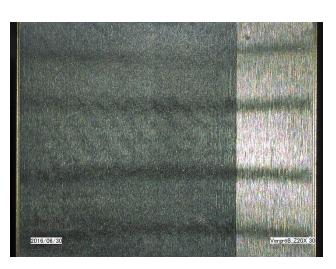
Test-duration:

39,3 h

Temperature:

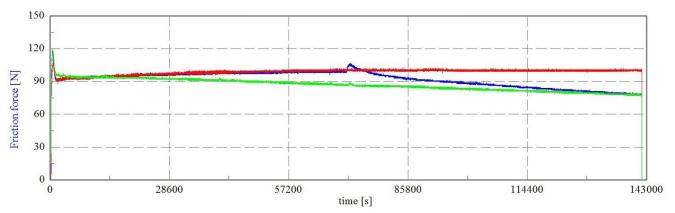

oil inlet temperature 60 °C

Friction coefficient:

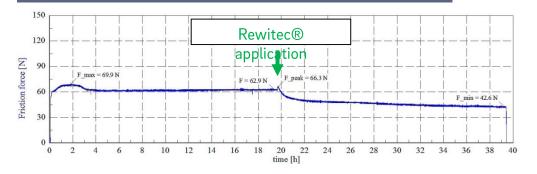

μ=normal force/friction force

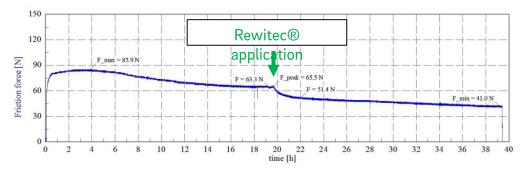
Scientific tests 2-Disc assembly rolling wear test VW first fill manual gearbox oil

Steel disc treated without REWITEC® REWITEC®

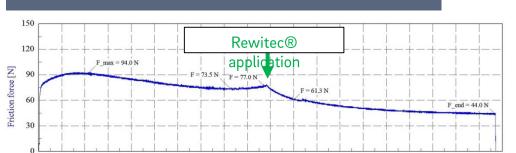


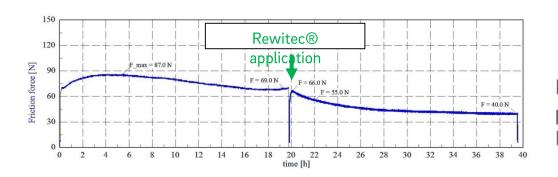
Steel disc treated with


(1 GPa; 424 rpm / 339 rpm, slip 20 %; 40 h; 60 °C)



- Red graph without REWITEC®
- Blue graph with REWITEC® added after 20 hours
- Green graph with REWITEC® added at the beginning
- Reduction of the surface roughness (R_a) due to wear up to 58 %
- Reduction of the friction force up to 22 %

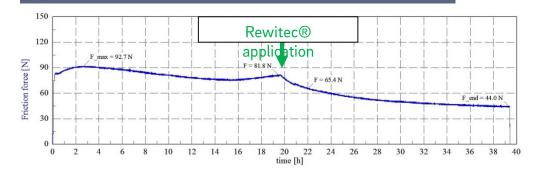


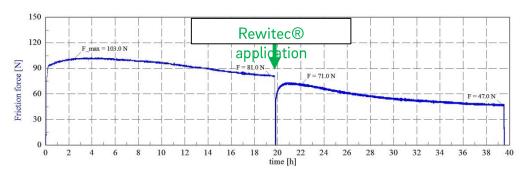


Castrol Optigear Synthetic X320 μ_{end} = 0.0198 Friction reduction -33 %

Mobilgear SHC XMP 320 μ_{end} =0.0191 Friction reduction -35 %

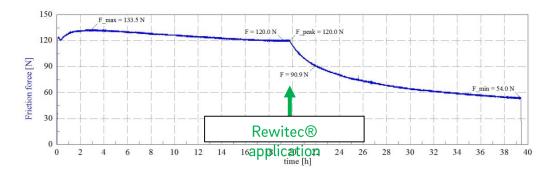
time [h]





Klübersynth GEM 4-320N μ_{end} =0.0210 Friction reduction -40 %

Fuchs Unisyn CLP 320 μ_{end} =0.0186 Friction reduction -36 %



Amsoil PTN 320 μ_{end} =0.0205 Friction reduction -46 %

Shell Omala S4 GX 320 μ_{end} =0.0219 Friction reduction -42 %

Klüberbio EG 2-150 μ_{end} =0.0251 Friction reduction -55 %

Oil analyses of the CASTROL X320

The following elements were found additionally in the tested oil after the application of the REWITEC DuraGear product:

- Si (Silicon up to 175ppm)
- Al (Aluminium up to 138ppm)
- Fe (Ferrum up to 6ppm)
- K (Potassium up to 9 ppm)

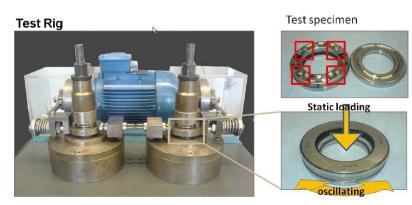
These elements are a part of the REWITEC formulation. All the other elements and additives in the oil are same concentration before and after the REWITEC DuraGear application.

Freshoil sample CASTROL X320

SAMPLE RATING			۵
Date tested			11.05.2016
Date of sample taken	-		
Date of last oil change	:		-
Top-up since change			
Operating time since of	change		-
Total operating time			
Oil changed			-
WEAR			
Iron	Fe	mg/kg	0
Chrome	Cr	mg/kg	0
Tin	Sn	mg/kg	0
Aluminum	Al	mg/kg	0
Nickel	Ni	mg/kg	0
Copper	Cu	mg/kg	0
Lead	Pb	mg/kg	0
Manganese	Mn	mg/kg	0
PQ index	-		< 25
CONTAMINATION			
Silicon	Si	mg/kg	17
Potassium	K	mg/kg	0
Sodium	Na	mg/kg	0
Water	%		< 0.10
OIL CONDITION			
Viscosity at 40°C	mm²/s		323.15
Viscosity at 100°C	mm²/s		34.18
Viscosity index	-		149
Oxidation	A/cm		
ADDITIVES			
Calcium	Ca	mg/kg	1895
Magnesium	Mg	mg/kg	5
Boron	В	mg/kg	0
Zinc	Zn	mg/kg	1
Phosphorus	Р	mg/kg	367
Barium	Ba	mg/kg	0
Molybdenum	Mo	mg/kg	1094
Sulphur	S	mg/kg	1869

Freshoil sample CASTROL X320 after REWITEC DuraGear W 100

SAMPLE RATING			۵
Date tested			11.05.2016
Date of sample taken			
Date of last oil change			
Top-up since change	-		
Operating time since of			
Total operating time			
Oil changed	-		
WEAR			-
Iron	Fe	mg/kg	4
Chrome	Cr	mg/kg	0
Tin	Sn	mg/kg	0
Aluminum	Al	mg/kg	138
Nickel	Ni	mg/kg	0
Copper	Cu	mg/kg	1
Lead	Pb	mg/kg	0
Manganese	Mn	mg/kg	0
PQ index	-		< 25
CONTAMINATION			
Silicon	Si	mg/kg	192
Potassium	K	mg/kg	9
Sodium	Na	mg/kg	3
Titanium	Ti	mg/kg	1
Water	%		< 0.10
OIL CONDITION			
Viscosity at 40°C	mm²/s		322.51
Viscosity at 100°C	mm²/s		34.37
Viscosity index	-		151
Oxidation	A/cm		
ADDITIVES			
Calcium	Ca	mg/kg	1881
Magnesium	Mg	mg/kg	8
Boron	В	mg/kg	0
Zinc	Zn	mg/kg	1
Phosphorus	Р	mg/kg	362
Barium	Ba	mg/kg	0
Molybdenum	Мо	mg/kg	1083
Sulphur	9	ma/ka	1903



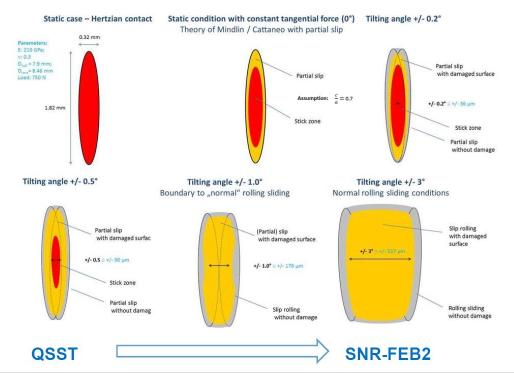
Influence of the Rewitec additive in greases against standstill marks and False-Brinelling damages on roller bearings.

False-Brinelling-Test-Rig

Standard test bearings for SNR- and standstill marks test with Fuchs LX460 grease will be used.

<u>Data</u>

Motor: 3
Oscillating Angle: ±
Oscillating Frequency: 5
Normal Load: 1
Standardized Test Period: 1


3kW/ 20,3 Nm ±0,1° till ± 3,0° 5 - 25 Hz 100 till 9000 N 1 min until 100 h Data Bearing Type 51206

Diameter: 41 mm
Weight: 136 g
Material: 100Cr6
Hardness: 62 +/-2 HRC

Drawing: Influence of the tilting angle

Supported by:

Federal Ministry
for Economic Affairs
and Energy

on the basis of a decision
by the German Bundestae

Frequency: 25 Hz Oszillation angle: +/- 0,5°

Axial load: 3 kN distributed to 4 balls (750 N per ball)

Temperature: RT (-10°C to 80°C possible)

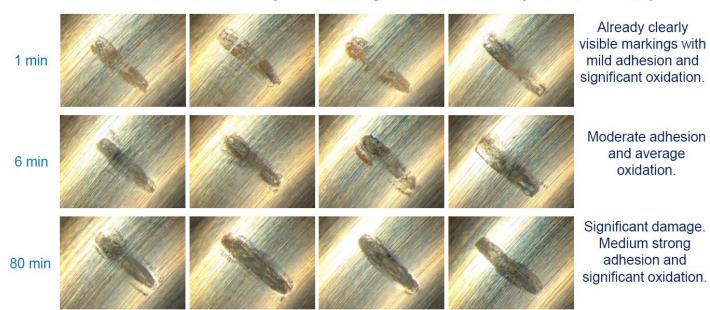
Test time: 1 min; 6 min; 1,3 h;

Test bearing: ARKL Type 51206 with 4 rolling elements/test

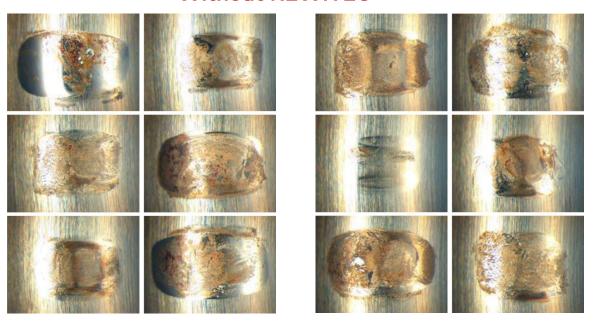
Measured values: Optical documentation and evaluation

Numbers of specimen: 1 grease type

Documentation: Photos of the 16 wear marks after the test and evaluation Statistics: Each test with 2 bearings (Double test, left and right unit


This test method reflects the influence of a macroscopically stationary bearing with changing tangential forces, which are initiated due to very small pivoting movements or due to vibrations (quasi-standstill test - QSS test).

Standstill test with pure Stabyl LX460 SYN (3 kN; +/- 0,5)

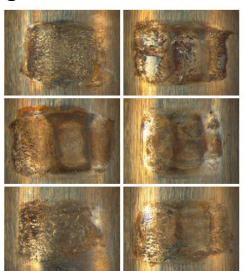

Left unit

Right unit

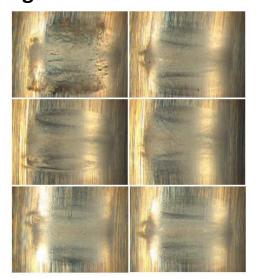
Without REWITEC®

The bearings are 1.3 hours pre-damaged with very small swivel angles of +/- $0.5\,^{\circ}$ and a force of 3 kN

With REWITEC®

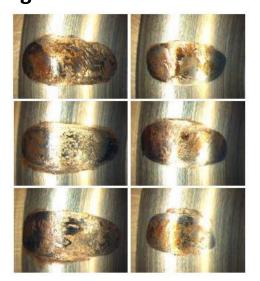


The bearings are 1.3 hours pre-damaged with very small swivel angles of \pm 0.5 ° and a force of 3 kN



SKF grease 1 without REWITEC®

SKF grease 1 with REWITEC®


The bearings are 1.3 hours pre-damaged with very small swivel angles of +/- $0.5\,^{\circ}$ and a force of 3 kN

SKF grease 2 without REWITEC®

SKF grease 2 with REWITEC®

The bearings are 1.3 hours pre-damaged with very small swivel angles of \pm 0.5 ° and a force of 3 kN

Overview wear mark depth

All wear mark depths were measured with an white light interferometer.

The values are the avarage of at least 8 single marks.

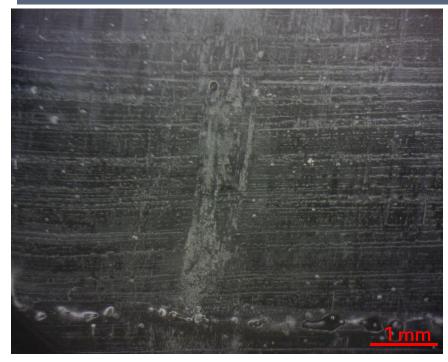
I can be seen clearly, that the use of Rewitec reduces the wear mark depth.

Especially the runs with a pre damaging by standstill conditions show significant advantages for the Rewitec modified grease.

WIND ENERGY | AUTOMOTIVE | MARINE | INDUSTRY

EXAMPLES OF APPLICATION

Wind Turbine Ebara 1.5 MW High Speed Shaft, Tooth Flank

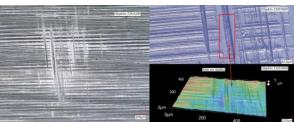


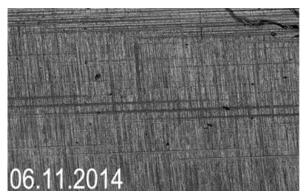
Bevor REWITEC®-treatment (20.03.19)

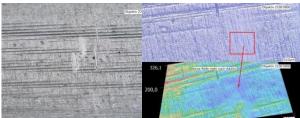
After REWITEC®-treatment (03.06.19)

Wind Turbine Ebara 1.5 MW High Speed Shaft, Tooth Flank

Bevor REWITEC®-treatment (20.03.19)


After REWITEC®-treatment (03.06.19)


Examples of application:


Wear development on a Bosch Rexroth gear tooth (GE 1.5 SL) over a period of two years

Run through marks on the tooth flank

Run through marks on the tooth flank after 6 weeks and 2 years:

- Reduction of the surface roughness and friction force
- Improved load carrying capacity
- Less stress for the tooth flank

Examples of application:

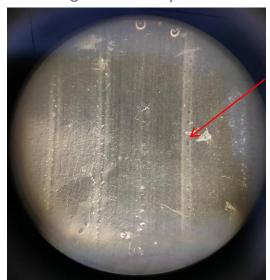
Coating and analysis of a wind turbine gearbox CSIC 2 MW VSCF

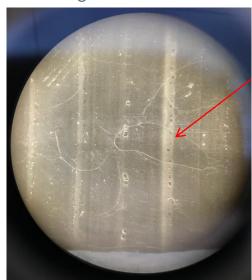


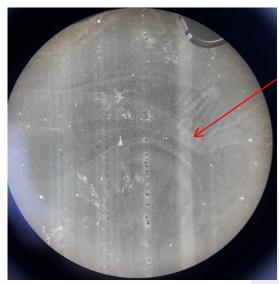
- Tooth flank is marked with an oilresistant paint
- Surface imprints before and after the application

Examples of application:

Coating and analysis of a wind turbine gearbox CSIC 2 MW VSCF


- Significant operational wear visible
- In the foot area visible micro pitting


- Operational wear noticeable reduced
- Reduction of micro pitting
- The contact pattern is optimized


Coating and analysis of a main bearing GE 1.5 wind turbine

Picture: Before wind turbine was treated with REWITEC®

Picture: 5 months after wind turbine was treated with REWITEC®

Picture: 12 months after wind turbine was treated with REWITEC®

> Red arrow shows the same right track on the surface imprint

Coating and analysis of a main bearing GE 1.5 wind turbine

Picture: Before wind turbine was treated with REWITEC®

 $R_a = 0.556 \, \mu m$ (within the track)

Picture: 5 months after wind turbine was treated with REWITEC®

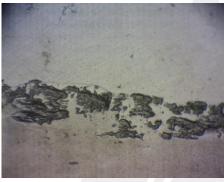
 $R_a = 0.403 \, \mu \text{m}$ (within the track)

Picture: 12 months after wind turbine was treated with REWITEC®

 $R_a = 0.225 \, \mu \text{m}$ (within the track)

> Red arrow shows the same track on the surface imprint

Coating and analysis of a main bearing Siemens SWT 2.3 wind turbine.

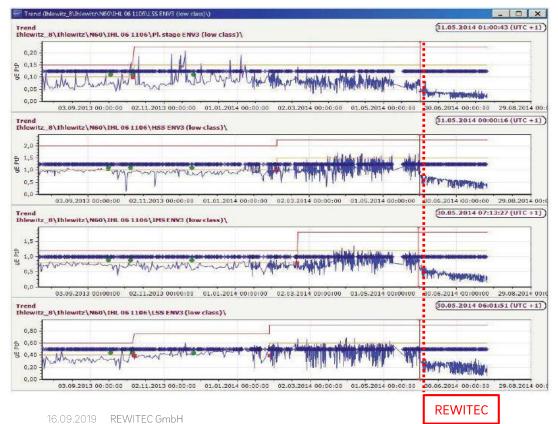

Picture: <u>Before</u> wind turbine was treated with REWITEC®

Picture: 2 months <u>after</u> wind turbine was treated with REWITEC®

Picture: <u>Before</u> wind turbine was treated with REWITEC®

Picture: 2 months <u>after</u> wind turbine was treated with REWITEC®

Coating and analysis of a main bearing Siemens 2.3 wind turbine.


Picture: <u>Before</u> wind turbine was treated with REWITEC®

Picture: <u>After</u> wind turbine was treated with REWITEC®

Examples of application

Goal of application:

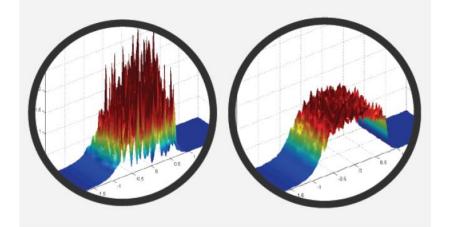
- Wear protection of a Nordex N60 gearbox by REWITEC® coating concentrate in May 2014
- Protection against further wear and prolongation of lifetime
- Analysis via SKF Maintenance Services GmbH

Results after 2 months:

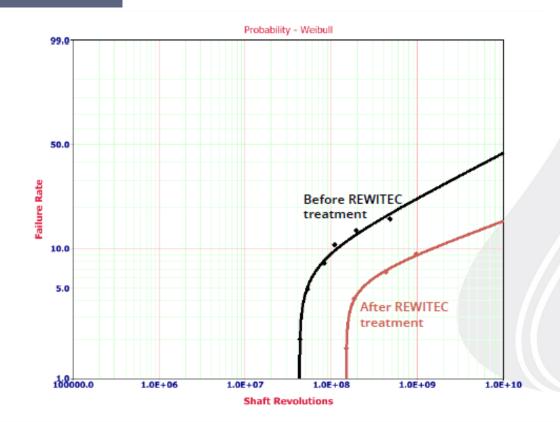
The report shows a significant difference.
 Stop of the high vibration level, decrease of the damage frequency

REWITEC® LIFETIME CALCULATIONS

SENTIENT SCIENCE


Mixed-EHL Solution for Life Prediction

Left: Surface pressure of two rough surfaces interacting without REWITEC®


Right: Surface pressure of two smooth surfaces interacting with REWITEC®

Sentient Science LIFETIME CALCULATIONS

Component	Simulation	Life, L50
Intermediate Pinion Bearing	Baseline	16.6 yrs
	Rewitec	> 50 yrs
	Life Extension	> 3
	Baseline	4.3 yrs
Planetary	Rewitec	14.2 yrs
Bearing	Life Extension	3.3

Component	Simulation	Life, L50
Intermediate Pinion Gear	Baseline (damaged)	2.7 yrs
	Rewitec	6.9 yrs
	Life Extension	2.6

AT A GLANCE

CONCLUSION

Conclusion

- Less surface roughness, friction and temperature in the tribological system
- Less stress and wear for the gearbox and the bearings
- Less stress for the lubricants
- Elimination of standstill marks on roller bearings
- Higher efficiency
- Higher reliability and availability, no downtime
- Cost savings, higher earnings
- ➢ Possible lifetime improvement by 2.6 − 3.3

Many thanks FOR YOUR ATTENTION

REWITEC GmbH

Dr.-Hans-Wilhelmi-Weg 1

35633 Lahnau, Deutschland

Telefon: +49 (0) 6441 / 445 99-0

E-Mail: info@rewitec.com

www.rewitec.com

on the basis of a decision by the German Bundestag

Visit us on Facebook or YouTube.