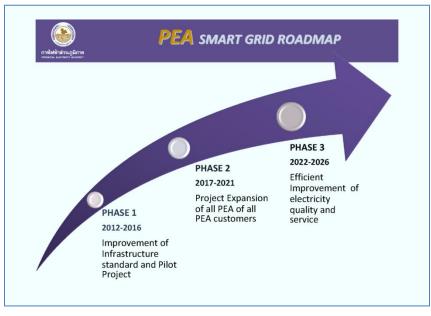
Smart Grid Simulation Modelling in Thailand

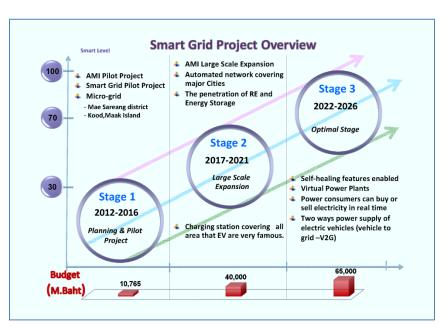
Weerakorn Ongsakul, PhD Energy Field of Study School of Environment, Resources and Development Asian Institute of Technology


Outline

- Introduction
- Electricity Supply Industry in Thailand
- Methodology
- Model Application
- Results and Findings
- Conclusion

Introduction

PEA's roadmap is strategized into three concepts named as "Smart energy", "Smart life" and "Smart community". The development starts with implementing relevant technologies such as advanced meter infrastructure, distribution automation, and renewable energy integration.



PEA Smart Grid Road Map Source: PEA

Introduction

PEA brings together each technology to support one living standard and finally set out for an environmental friendly community. A pilot project for AMI initiative of 100,000 meters was announced in 2012

PEA Smart Grid Project Overview Source: PEA

Electricity System in Thailand

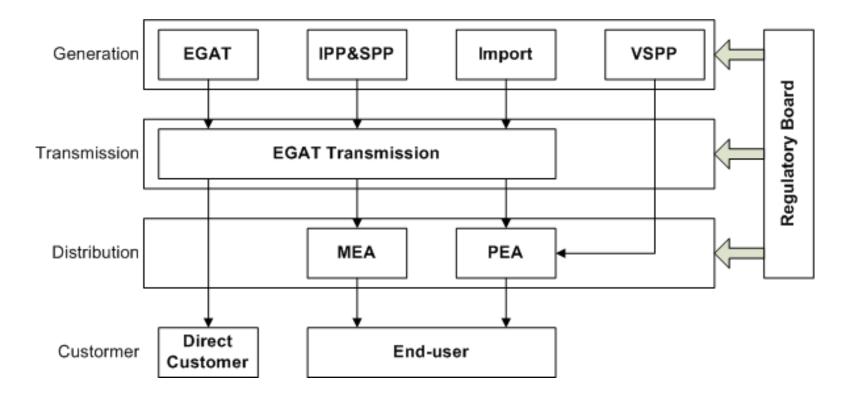


Fig. Electricity Supply Industry in Thailand

Electricity System in Thailand

Generation: EGAT, IPP, SPP, VSPP

- Rapid growth of intermittent energy

Transmission: EGAT

- Infrastructure upgrade
- Deployment of measurement units
- Advanced energy management system

Distribution: MEA, PEA

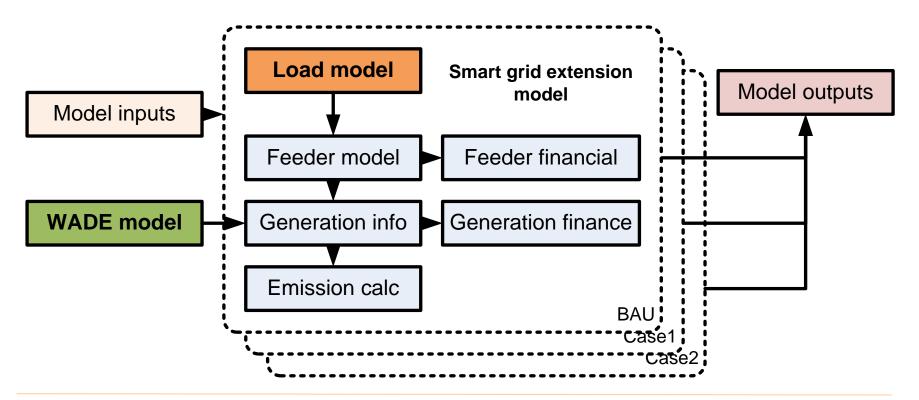
- Same aspect as Transmission

End User

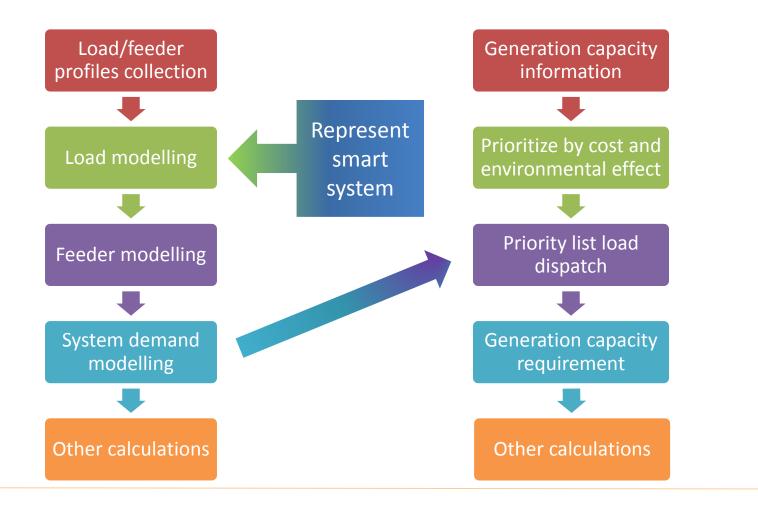
- Mass AMI deployment
- End-user energy management system

Power Generation from Renewable Energy in Thailand

Generating Capacity of RE SPP and VSPP as of 17 December 2013								
			rating Cap			Total	Target	
unit : MW	operated	with PPA	approved	applied	Total	Sale	Original	New
Wind	216	198	1,489	759	2,662	2,457	1,200	1,800
Solar								
farm/rooftop	735	1,216	4	1056	3,011	2,901	2,000	2,200
Community								
solar	0	0	0	0	0	0	0	800
Micro hydro	14	15	0	0	29	28	324	324
Bio mass	2,066	1,336	269	289	3,960	2,566	3,630	4,800
Biogas and								
others	215	86	85	12	398	330	600	600
Biogas								
(napier)	0	0	0	0	0	0	0	3000
Municipal								
waste	47	119	31	124	321	290	160	400
New RE	0	0	0	0	0	0	3	3
Total	3,293	2,970	1,878	2,240	10,381	8,572	7,917	13,927

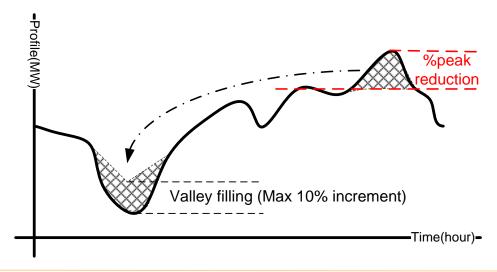


Source: E for E foundation, 2014


- 1. The model should follow these aspects
 - Demand data is categorized according to PEA tariff
 - Generation data is categorized by technology
 - Pollutant emission data follows generation categories
- 2. Model data shall follow Thailand's policy, plans
 - Power Development Plan
 - Alternative Energy Development plan
- 3. The model should consider dynamic load
 - Smart grid's load shall be equipped with demand response capability
 - Each load has an individual response depending on its profile
- 4. Pattaya city is chosen as the test system
 - Top selection from PEA smart grid pilot project
 - Variation of load profile

Model diagram

Part	Type of data
Load model	• Hourly normalized load profile of each load type (categorize
	by tariff plan)
	 Average daily peak of each profile
Feeder model	Combination of load per feeder
	 Monthly distributed peak ratio
	Yearly distributed peak ratio
	 Annualized demand and energy consumption growth
	 Average distribution system loss
	 Equipment loss
	 Line loss
	 Substation loss
Feeder financial	• Capital cost, operation and maintenance cost per component



Part	Type of data
Generation info*	• Existing and future capacity of selected CG and DE technology
	according to WADE model
	 Expected load factor of each generation technology
	Reserve margin percentage
	 Average transmission system loss
Generation	 Average capital cost, O&M cost by technology of generation
finance*	according to WADE model
	Average fuel cost
	• Average transmission and distribution costs, financial term,
	return on capital by technology according to WADE model
Emission calc*	• Emission factor for NO_X , SO_2 , PM_{10} and CO_2 by technology of
	generation according to WADE model
	Heat rate by technology

Load model

- Serve as a basis for the whole model
- Normalized load profiles from PEA
- Modified profile for smart grid case

Feeder model

- Each feeder is comprised of many load as to resemble PEA feeder profile
- Monthly demand and consumption calculation
- Yearly demand and consumption calculation

 $Workingdays = \frac{Year - (Weekends \times no.weeks + official holidays^{1})}{no.month}$ $Workingdays = \frac{365 - (2 \times 52 + 16)}{12} \approx 20$

Feeder financial

- Contain financial calculation relates to feeder model, mainly capital cost, O&M cost
- Investment cost for smart grid system is also calculated based on PEA roadmap
- Expected tariff is also calculated

Generation info

- Construction is taken from WADE model so as the data
- Capacity of each technology is filled using priority list
- Priority is ordered by cost per kwh and environmental effect
- Future capacity is considered using Thailand PDP

$$Gen_{hi} = \begin{cases} (D_h) \times CP_i, & i = 1, D_h < Gen_{i,max} \\ \\ \begin{pmatrix} D_h - \sum_{j=1}^{i-1} Gen_{hj} \end{pmatrix} \times CP_i, & i \ge 2, D_h < Gen_{i,max} \\ \\ Gen_{i,max} \times CP_i, & D_h \ge Gen_{i,max} \end{cases}$$

Generation finance

- Generation side financial calculation mainly capital cost for generation capacity, T&D expansion, O&M cost, fuel cost
- Production cost for each technology is also calculated

$$Price_{i,y} = Price_{i,y-1} + \left(\frac{Capital\ investment_{i,y}}{total\ lifetime\ in\ hour}\right) + \left(\frac{O\&M\ cost_{i,y} + Fuel\ cost_{i,y}}{total\ Kwh_{i,y}}\right)$$

Emission calculation

- Four major pollutant is considered, CO₂, SO_x, NO_x, PM₁₀
- Calculation using emission factor adopted from WADE model
- Renewable energy produce no emission

Outcome

- Selected results are listed
- Comparing in 6-7 year period, as smart system may need to be re-invested due to product lifetime

- 1. Business as Usual (BAU) Case
 - Percentage of each generation type remains the same as in PDP
 - No smart system applied
- 2. Smart grid (Modified) Case
 - Each load profile is modified by a peak shifting
 - Energy consumption remains the same
 - Three cases are considered as 5%, 10% and 15% on peak reduction.
- 3. Smart grid with energy conservation (Modified+ EC) Case
 - Every parameters are as the same as previous one
 - Energy consumption is reduced by 5% on average

	BAU	Modified	Modified+EC
Peak reduction [%]	0	5, 10, 15	5, 10, 15
EC [%]	0	0	5

- The area in consideration is **Pattaya city**
- There are 6 substations to be covered
 - Banglamung 100 MW capacity
 - Chom Tien
 - Pattaya Tai
 - Khao Mai Kaew
 - Pattaya Nua
 - Pattaya Tai 2*

- - 100 MW capacity
 - 100 MW capacity
 - 50 MW capacity
 - 100 MW capacity
 - 50 MW capacity

*Only 5 of them are modeled due to lack of profile data

	Sep-2010	
Tariff types	Number	%
1. Residential (lower than 150 kwh)	19,064	14.09
2. Residential (higher than 150 kwh)	96,143	71.07
3. Small business	15,045	11.12
4. Medium business	868	0.64
5. Large business	28	0.02
6. Specific business	679	0.50
 Government office or Non-profit organization 	393	0.29
8. Agricultural pumping	3	0.00
9. Temporary loads	3,062	2.26
Total	135,285	100.00

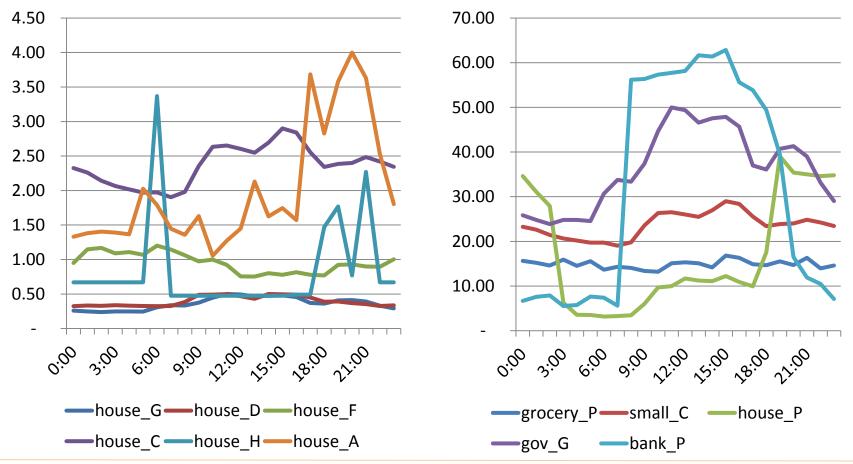
Source: http://www.pattaya.go.th

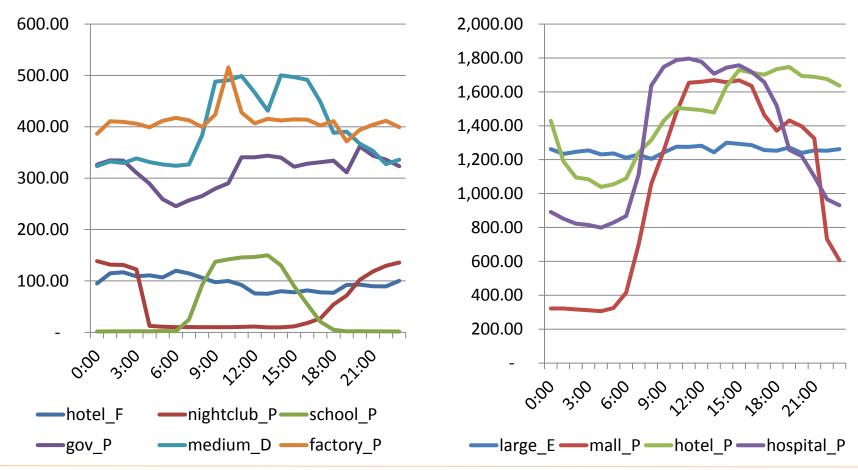
Collected load model

• PEA's load profiles

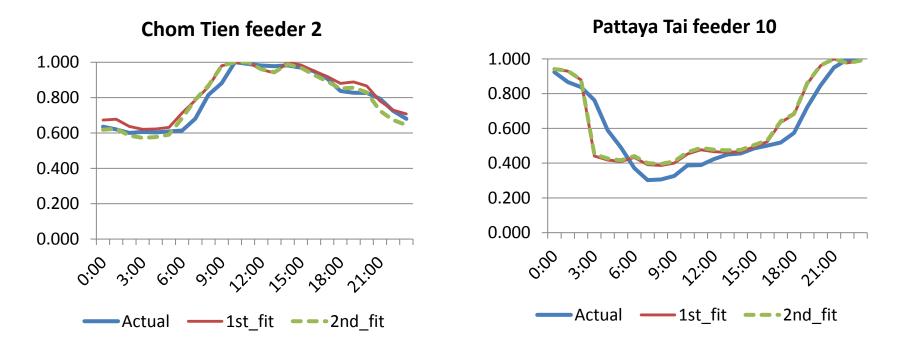
Load profile	Model name	Peak demand [KW]
Average Residence (<150kwh/ month)	House_A	4.0
Average Residence (>150kwh/ month)	House_B	7.0
Average Small general service	Small_C	29.0
Average Medium general service	Medium_D	500.0
Average Large general service	Large_E	1300.0
Average Government and non-profit	Gov_G	120.0
Average Specific business (Hotel)	Hotel_F	50.0

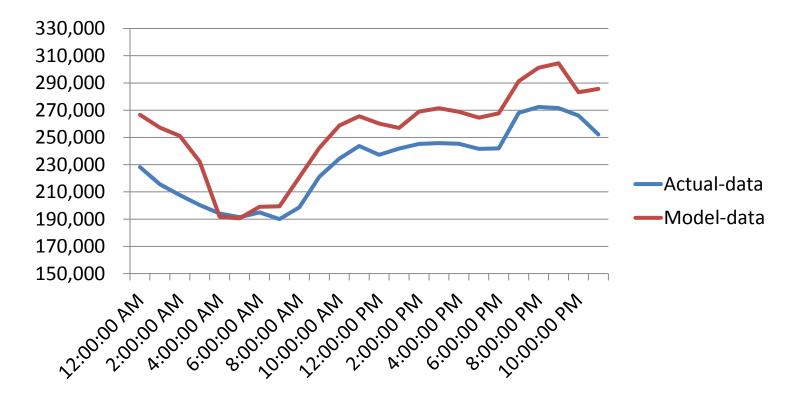
• PEA's load profiles


Load profile	Model name	Peak demand [KW]
Local Grocery store	Grocery_P	16.8
Local Residence	House_P	39.1
Local Bank	Bank_P	62.9
Local Nightclub	Nightclub_P	138.7
Local School	School_P	149.7
Local Government office	Gov_P	361.8
Local Factory	Factory_P	515.6
Local Shopping mall	Mall_P	1668.8
Local Hotel	Hotel_P	1746.0
Local Hospital	Hospital_P	1796.8


Generated profiles

Load profile	Model name	Peak demand [KW]
Generated Residence#1	House_C	2.9
Generated Residence#2	House_D	0.5
Generated Residence#3	House_F	1.2
Generated Residence#4	House_G	0.5
Generated Residence#5	House_H	3.4
Generated Residence#6	House_I	5.8
Generated Residence#7	House_PF	5.2
Generated Residence#8	House_PM	1.7
Generated Residence#9	House_PH	1.8
Generated Residence#10	House_PT	1.8





Feeder curve fitting

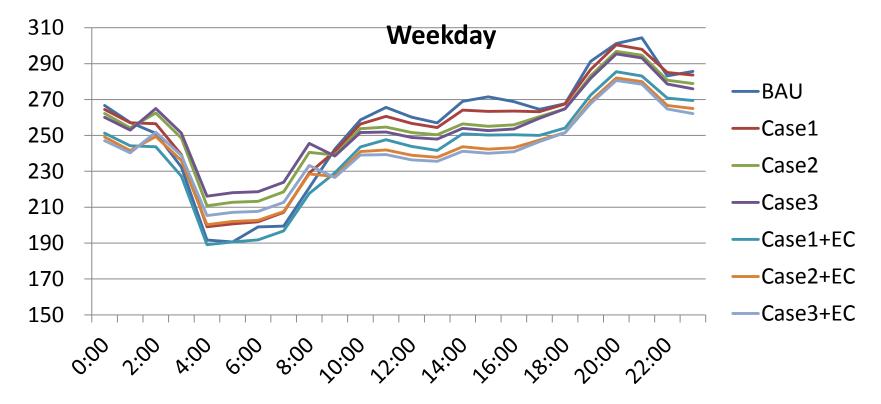
System load

Generation technology	Base capacity [MW]	Scaled capacity [KW]	Dispatch priority
Coal steam turbine	2,007.00	21,301	6
Lignite steam turbine	2,180.00	23,137	1
Oil steam turbine	315.00	3,343	18
Gas steam turbine	3,714.00	39,417	15
Combine cycle gas turbine	16,091.00	170,776	14
Diesel gas turbine	120.00	1,274	16
Diesel engine	4.00	42	19
Hydropower	3,424.00	36,339	2
Interconnection	2,157.00	22,893	3
Nuclear power	-	-	4

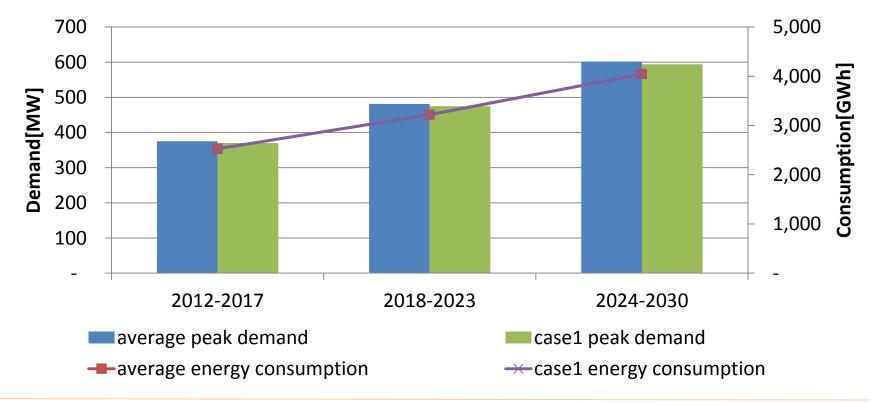
Generation technology	Base capacity [MW]	Scaled capacity [KW]	Dispatch priority
Coal CHP	370.00	3,927	7
Oil CHP	5.00	53	17
Gas CHP	1,293.00	13,723	13
Biomass	1,157.70	12,287	12
Biogas	57.26	608	8
Solar PV	10.21	108	9
Wind turbine	0.51	5	10
Hydro power – small	72.92	774	5
Waste to energy	9.40	100	11

Generation technology	Capital cost [Baht/kW]	O&M cost [Baht/kWh]	Fuel cost [Baht/kWh]	T&D cost [Baht/kW]
Coal steam turbine	33,517.80	0.53	67.73	18,642.05
Lignite steam turbine	32,900.21	0.32	15.62	18,642.05
Oil steam turbine	24,207.30	0.31	582.44	18,642.05
Gas steam turbine	13,345.05	0.25	300.34	18,642.05
Combine cycle gas turbine	17,689.95	0.16	300.34	18,642.05
Diesel gas turbine	13,345.05	0.13	1,075.39	18,642.05
Diesel engine	13,345.05	0.75	1,075.39	18,642.05
Hydropower	59,897.55	0.22	-	18,642.05
Interconnection	-	-	-	18,642.05
Nuclear power	35,690.25	0.05	22.35	18,642.05

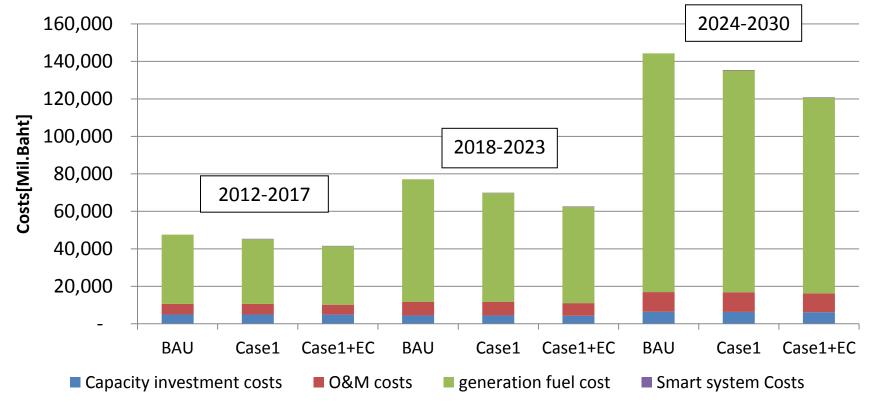
Generation technology	Capital cost [Baht/kW]	O&M cost [Baht/kWh]	Fuel cost [Baht/kWh]	T&D cost [Baht/kW]
Coal CHP	35,690.25	0.38	67.73	11,185.23
Oil CHP	16,448.55	0.48	582.44	11,185.23
Gas CHP	43,914.53	0.16	238.08	11,185.23
Biomass	46,273.19	0.36	66.31	11,185.23
Biogas	126,746.94	1.08	66.31	11,185.23
Solar PV	41,462.76	0.15	-	11,185.23
Wind turbine	50,587.05	0.43	-	11,185.23
Hydro power – small	178,016.76	0.24	-	11,185.23
Waste to energy	35,690.25	-	66.31	11,185.23


Generation technology	NO _x [kg/GJ]	SO ₂ [kg/GJ]	PM ₁₀ [kg/GJ]
Coal steam turbine	0.341	2.218	0.250
Lignite steam turbine	0.193	1.792	0.026
Oil steam turbine	0.142	0.946	0.065
Gas steam turbine/CCGT	0.061	0.0003	0.0008
Diesel gas turbine/engine	0.079	2.218	0.007
Coal CHP	0.020	0.020	0.01
Oil CHP	0.020	0.010	0.003
Gas CHP	0.020	0.0167	0.0028
Biomass	0.040	0	0
Biogas	0.054	0	0

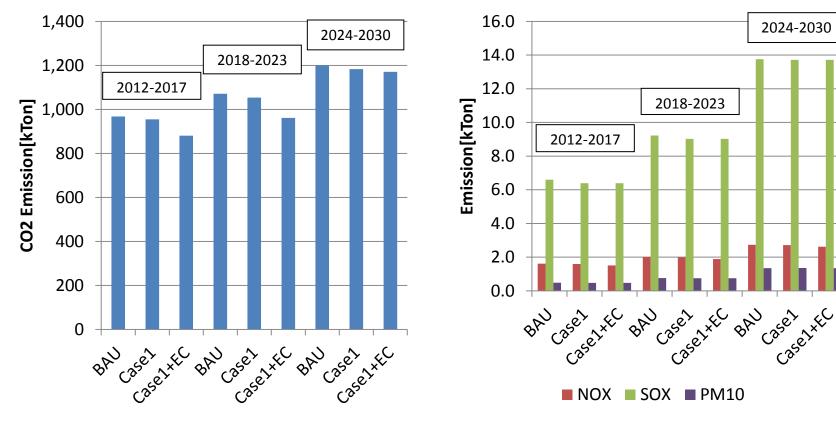
Fuel Type	CO ₂ [kg/GJ]		
Natural Gas	56		
Furnace oil	77		
Diesel	74		
Lignite	101 .	Technology	Heat rate [kJ/kWh]
0		Steam Thermal	10,259
		Combined Cycle	8,063
		Gas Turbine	13,576
		Diesel Engine	11,089
		Combined Heat and Power	8,633
		Biomass/Biogas	24,000
	-	Waste to energy	20,000



System profile (MW)



System growth


Overall cost

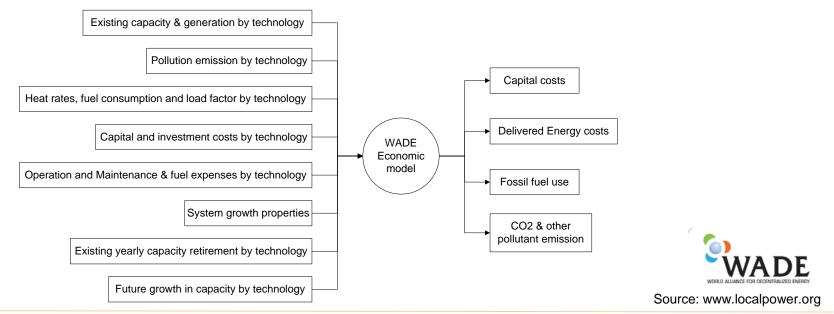
Costs [M. Baht]	BAU	Case1	Case1+EC
Capital investment	4,532.87	4,510.82	4,459.01
T&D investment	176.71	176.71	176.71
Feeder investment	294.37	282.12	200.38
Smart system investment	-	1,112.14	1,112.14
Generation O&M cost	3,373.04	3,362.63	3,163.06
Generation fuel cost	36,916.90	34,505.60	31,207.19
Feeder O&M cost	2,244.13	2,244.13	2,131.93
Smart system O&M cost	-	201.19	201.19
Difference		1,343.80	5,649.26

Other pollutant emission

CO2 emission

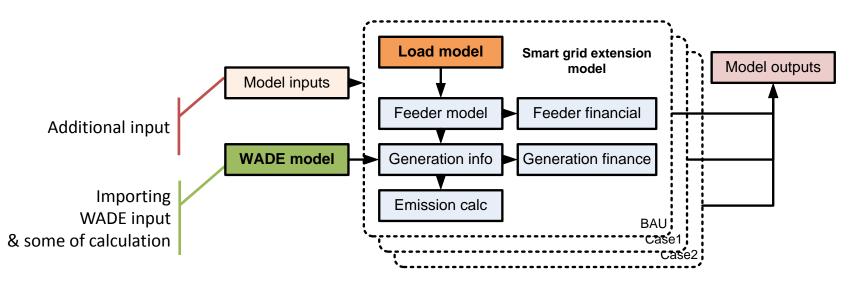
Conclusion

- The smart grid model has been simulated on Pattaya city considering dynamic load forecast.
- Three scenarios have been demonstrated with sensitivity analysis.
- Simulation results indicate that smart grid benefits including economic and environmental benefits are very attractive.



THANK YOU FOR YOUR ATTENTION

WADE Economic Model (WADE model)


WADE economic model or in short WADE model is an economic model which is a product of *World Alliance for Decentralized Energy (WADE)* mainly compares the performance of decentralized energy resource (DE) and centralized power generation (CG) in meeting future electricity demand growth. WADE model directly compares in economic and environmental terms based on extensive input data and defined assumptions.

WADE Economic Model (WADE model)

- Our model utilizes input specified by WADE model and also requires several additional input such as load profile, feeder profile. Detailed description is in the methodology part.
- Also our work utilizes partly some of calculation from WADE model in our generation system calculation.

