

Federal Ministry for Economic Affairs and Climate Action

Small Decentralized Energy Systems in Remote Areas – Practical Experiences

Stephan Baur Chair of Renewable and Sustainable Energy System (ENS) Technical University of Munich (TUM) 25.04.2023, Munich

Experience with Decentralized Energy Systems Nepal, India, Zimbabwe, Togo and Ghana

People without access to electricity **worldwide**: 759 million (2019)

Access to electricity – **urban population – Peru**: 100 % (2020)

Access to electricity – **rural population – Peru**: 96,8 % (2020)

[www.worldbank.org, April 2023]

Experience with Decentralized Energy Systems Lophelling Boarding School (LSB) in Nepal

Experience with Decentralized Energy Systems Zimbabwe – Service and Maintenance – Responsible Persons

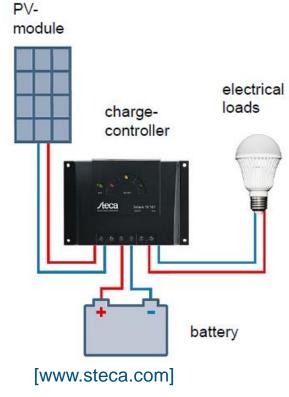
Typical Electrical Energy Demand Results from Measurements, Surveys and Simulations

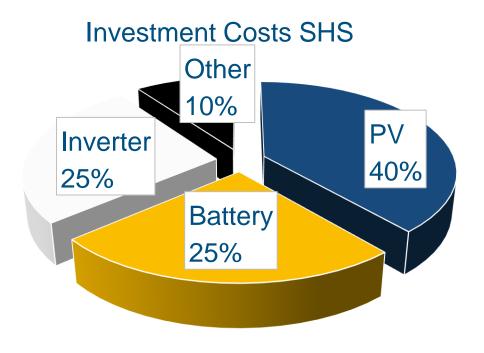
Household Category A

Household Category B

Power Peak:0.1 - 0.2 kWEnergy Demand per Day:0.3 - 1.0 kWh

Power Peak:1.0 - 1.5 kWEnergy Demand per Day:3.5 - 4.5 kWh





Small Decentralized Energy Systems (Solar Home Systems) Central Role of the Battery System

[www.nytimes.com]

Lead-Acid Batteries or Lithium-Ion Batteries Brief Comparison

	Lead-acid battery	Lithium-ion battery
Energy density	low	high
Efficiency	about 80 %	more than 90 %
Self-discharge	high	low
Safety	high	OK
Operational mode	robust, easy	battery management system (BMS)
Lifetime	5 – 10 years	15 – 20 years ?
Availability	worldwide	better and better, dev. countries?
Experience	high (150 years)	low
Costs	100 – 300 Euro/kWh	600 – 1000 Euro/kWh

Lead-Acid Batteries Types – Open or Closed Design

Open lead-acid battery

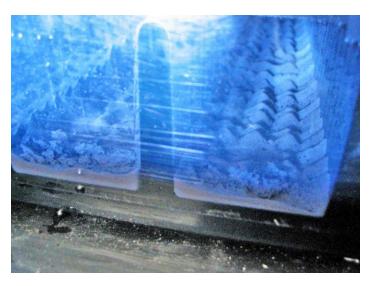
- Liquid electrolyte
- Refill of battery water necessary
- Higher maintenance than closed
 Design

[www.conrad.de]

Closed lead-acid battery

- Gel- or fleece-Design
- Electrolyte fixed with silica (gel-Design)
- Electrolyte fixed with fleece (fleece-Design)
- Valve for overpressure
- Higher cost than open Design

Lead-Acid Batteries Aging Effect – Erosion

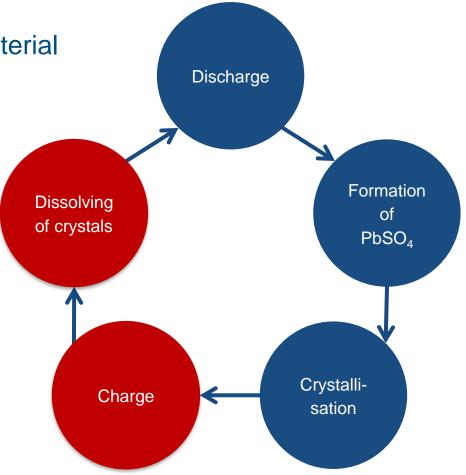

Reaction equation – lead-acid battery discharge:

 $PbO_2 + Pb + 2H^+ + 2HSO_4^- \rightarrow 2PbSO_4 + 2H_2O$

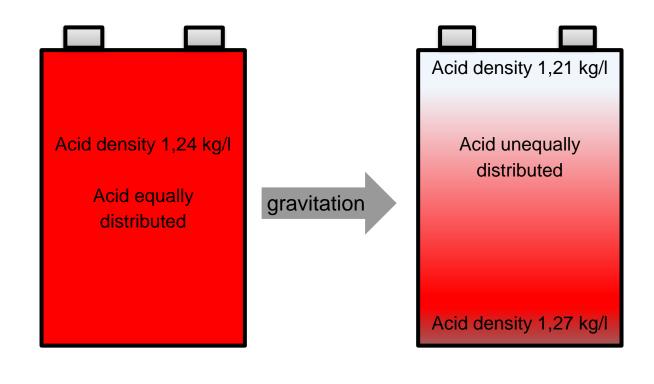
During a discharge process, up to 50% of the active material is converted from PbO_2 and Pb to $PbSO_4$.

- Components have different volumes per mole
- Mechanical stress
- Loosening of active material
- Accumulation of active material in the bottom of the battery

Lead-Acid Batteries Aging Effect – Sulphation


During a discharge process, up to 50% of the active material is converted from PbO_2 and Pb to $PbSO_4$.

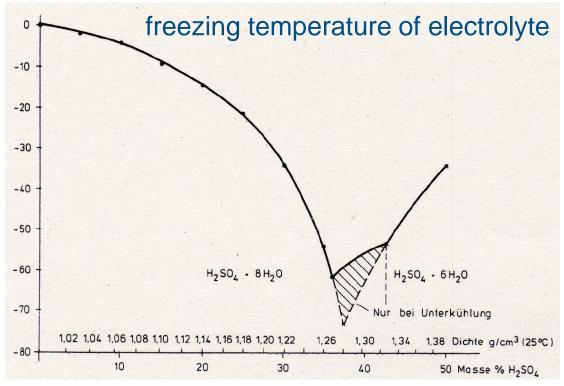
- ► Formation of lead sulphate crystals (about 1 µm)
- Circulation is disturbed by:
 - insufficient charge
 - extended duration in discharged state
- ► Lead sulphate crystals grow (about 10 µm)
- Incomplete dissolving of lead sulphate crystals
- Sulphation leads to loss of capacity



Lead-Acid Batteries Aging Effect – Acid Stratification

Consequences:

- Increased charge in the upper part
- Increased discharge in the lower part
- Overcharge and deep discharge
- Fast sulphation and erosion in the lower part
- Fast aging in the lower part


Reduction:

- Open batteries (liquid electrolyte):
 - scheduled overcharge or active electrolyte circulation (external pump)
- Closed batteries (gel or fleece): storage orientation

Lead-Acid Batteries Operation at Low Temperatures

[D. Berndt, Bleiakkumulatoren, VDI-Verlag, Düsseldorf 1986]

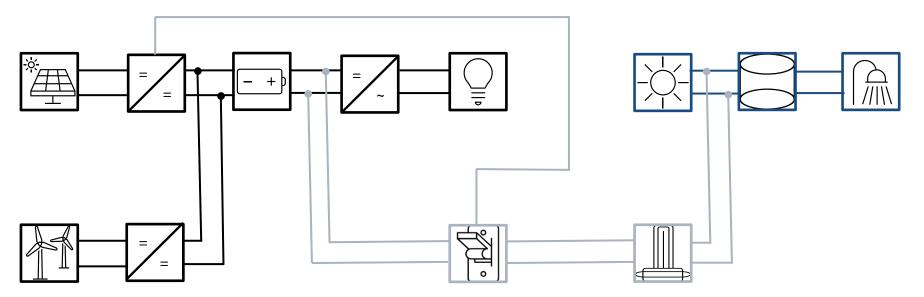
Lead-Acid Batteries Operation at High Temperatures

- Optimal battery temperature: 10 to 20 °C
- Increased ageing at high temperatures!
- Rule of thumb:

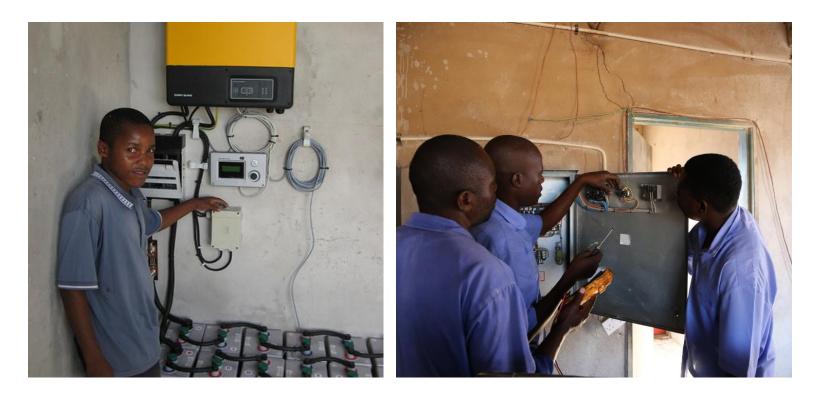
10 °C temperature increase

doubling of aging effect (lead-acid and lithium-ion batteries)

Ventilated and cool location



Decentralized Energy Systems Optimization with Sector Coupling – LBS Nepal

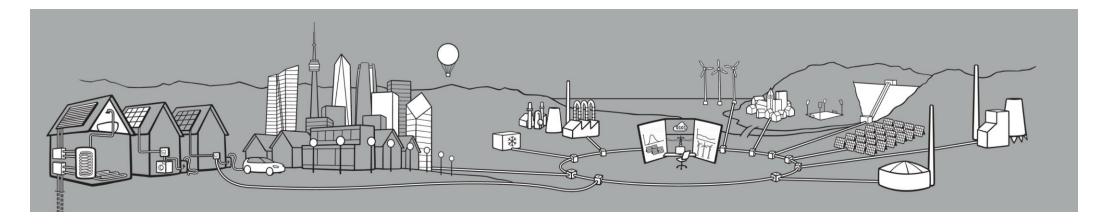


Experience with Decentralized Energy Systems The Human Factor

Fundamental questions:

- Who is responsible?
- Suitable technology?
- Knowledge and education?

Knowledge transfer:


- Curricula
- Cooperations
- Job potentials
- Acceptance increase

Thank you for your attention!

Stephan Baur Chair of Renewable and Sustainable Energy Systems (ENS) Technical University of Munich stephan.baur@tum.de

