JUTTA STROHBECK, RAINER HOFFMANN

Green hydrogen and Power-to-X

Energy business trip to Namibia and South Africa

© 2023 ABB. All rights reserved.

About ABB

ABB is a leading technology company that is vigorously driving the transformation of society and industry worldwide into a more productive and sustainable future.

By combining its portfolio in electrification, drives, process automation, robotics and factory automation with software, ABB defines the boundaries of what is technologically possible, enabling new levels of excellence

Fully decentralized business model with 21 divisions

Key sustainability goals Achieve by 2030

We enable a low-emission society

- Climate neutrality in our own company
- Supporting our customers in reducing annual CO2 emissions by > 100 megaton¹
- Emissions reduction in the supply chain

We preserve **resources**

- 80% of ABB's products and solutions are covered by the recycling approach
- Zero waste to landfill²
- Sustainability concept for suppliers

We promote social progress

- No harm to our employees and contractors
- Comprehensive D&I frameworkt³;
 25% female representation among ABB executives
- Top score for employee engagement in our industry
- Effective support for communitybuilding initiatives

INTEGRITY AND TRANSPARENCY ALONG OUR VALUE CHAIN

1. savings in 2030 through solutions for our customers 2021-30 2. wherever local conditions permit 3. diversity and inclusion framework concept

Hydrogen – ABB Offering

Hydrogen production

Transport and Storage

Consumption

ABB supports within the different hydrogen-sectors

A hydrogen-based energy concept – an example

We can develop an overall concept - and thus a carefree entry into the hydrogen variety

ABB Opportunities

Hydrogen

ABB offering

- Energy Management Systems
- Asset Performance Management and Digital Twin
- Safety and Automation Systems
- Remote Control & Autonomous Operation
- Analysers & Instrumentation
- Power distribution solutions (MV, LV, HV) and studies
- Power rectifiers
- Partnerships with key technology providers (electrolysers, fuel cells, compressor stations) for a complete solution

Power-to-X

ABB Ability™ Energy management OPTIMAX®

Optimization of multiple el.-modules for efficiency and degradation

OPTIMAX® for Hydrogen Energy Management

- individual efficiency curve for each electrolyser module
- Operation of the plant in optimal condition for different set points
- Enables predictive maintenance of modules
- Monitoring and optimization of electrolyzers and coordinated real-time optimization of multiple electrolyzer modules

HPP (Hydrogen Production Plant) Sizing Tool

Consulting and analysis in the conception phase, FEED and design

System Design and Scenarios

						ABB Hyd	ABB Hydrogen Production Plant Sizing Tool				
Timeseri	es Grid	Generatio	on Electrolyze	r Storage	Costs	Assessment	H2 Demand	Results			
_											
Planne	ed Elect	rolyze	er Modu	ls							
Base Case											
What is the module type that is used? * How many modules do exist?						Derived maximum	power demand				
type A		~	6								
🔽 Do you wa	nt to investigate ar	alternative m	odule type?								
-	_										
Alternative	Case										
What is the alternative module type? * How many alternative modules should be used?						Derived maximum power demand					
type B		~	7								
_											
Available me	odules										
	PEM / ALKA	LINE PMD	N (MW) P _{MAX} (MV	/) MAX RAMP	ING (% OF P _{MAX} /M	IIN) PRESSUR	E-OUT (BAR)	EFFICIENCY (%) AT P _{MIN}	EFFICIENCY (%) AT P	MAX COST (€)	_
Тур А		PEM	0.42 0.3	2	0	.30	0.28	0.38	C	.38 0.30	

Planning parameters:

- **Network:** technical limit, prices, GHG mix
- Generators (PV, wind, diesel, waste2energy): timetables, GHG
- Electrolyzer: module type, number of modules, efficiencies, limit values
- Storage: Size, Pressure, Compression
- Costs: depreciation, operating hours

Results:

- Scenarios: Optimized, non-optimized, electrolyzer module types
- Cost per scenario divided: Capex, O&M, Power
- Greenhouse gas emissions per scenario

References

Auxerre / FR Pilotanlage zur H2-Produktion

Pilot plant Auxerre – H2 for transport

Thyristor bridge with 12 pulses

- Power factor correction and harmonic filtering
- Electrolyser including drying and cleaning unit
- H2 buffer tanks, compressors and medium-pressure accumulators
- H2 filling station

OPTIMAX®

- Monitoring of the plant
- Real-time optimization of the electrolyzer
- Predictive optimization of H2 production

Outlook

 Multiple such facilities managed through a hybrid cloud

Customer: Hynamics Edf Group **Location**: Auxerre, FR **Delivery:** OPTIMAX[®]

Production site

Mission to Zero – Busch Jaeger

Customer need

- Optimization of: solar, EV, battery, co-generation, backup generator
- Optimal use of own production
- Participation in the energy market

ABB solution

- Software-as-a-Service with minimal upfront costs
- Minimal costs for technology and local hardware
- Aggregate multiple site EMSs

Customer benefit

- Reduced energy costs
- Increased transparency and internal consumption
- 745t /p.a. CO2 saving
- 360-degree service package

Customer: Busch-Jaeger Elektro GmbH Location: Lüdenscheid Delivery: OPTIMAX®

6,8% Electricity costs savings

١

Ķ

the

Ŷ

<u>ال</u>

赉

Offshore – Connection

Kriegers Flak

Customer need

- 2 countries interconnect their onshore transmission systems
- Via 4 offshore wind farms platforms

ABB solution

- Real-time data processing and evaluating of P/V references to control power flow
- Optimal powerflow calculation based on grid model
- Predictive and forecast functions

Customer benefit

Cutting-edge technology to manage and control the Combined Grid Solution:

- Power flow (active, reactive)
- Incorporating the HVDC-Link

Customer: 50Hertz & Energinet DK **Location**: Baltic Sea **Delivery:** OPTIMAX[®] for VPPs

Ŷ

袰

Backup Slides

ABB's contributions to the value chain

Energy Management System (EMS) / Process Control

System Design and Implementation (modular) + Advanced Services/Maintenance

ABB Ability Platform – integrated functional, technological and operational ecosystem

Pathways of green Hydrogen

https://www.bmwi.de/Redaktion/DE/Downloads/Studien/transformationspfade-fuer-strombasierte-energietraeger.pdf?__blob=publicationFile

https://www.hydrogenious.net/index.php/en/hydrogenious-3/lohc-technology/

https://www.methanol.org

https://ammoniaenergy.org

https://en.wikipedia.org/wiki/Energy_density

© 2023 ABB. All rights reserved. Slide 20