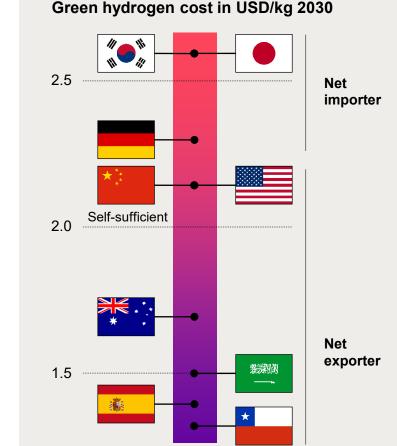
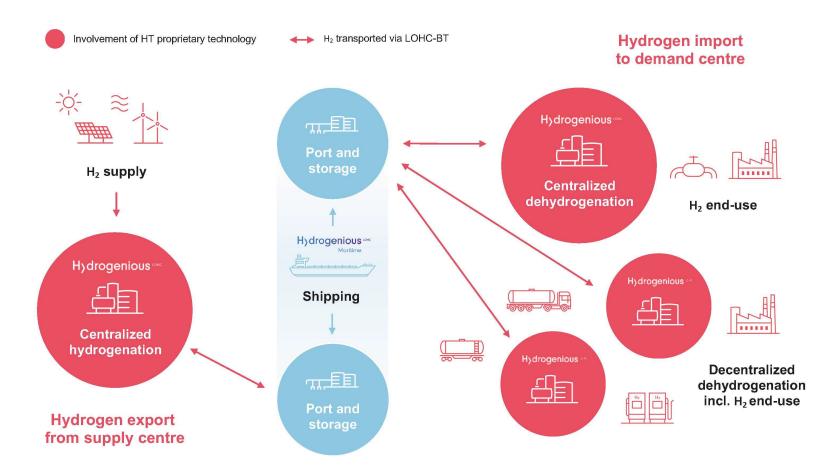

Carrying the new energy world. Handling hydrogen as an oil.

German-Finnish Green Hydrogen Conference


Josef Schütz | 09.05.2023

OUR MARKET


Mismatch of key supply and demand centers driven by capacity constraints and cost differentials will propel global H_2 trade

Hydrogenious LOHC

LOHC-BT enabling H₂ end-to-end-imports

German-Finnish Green Hydrogen Conference | 09.05.2023

Our LOHC-BT technology is disrupting hydrogen infrastructure

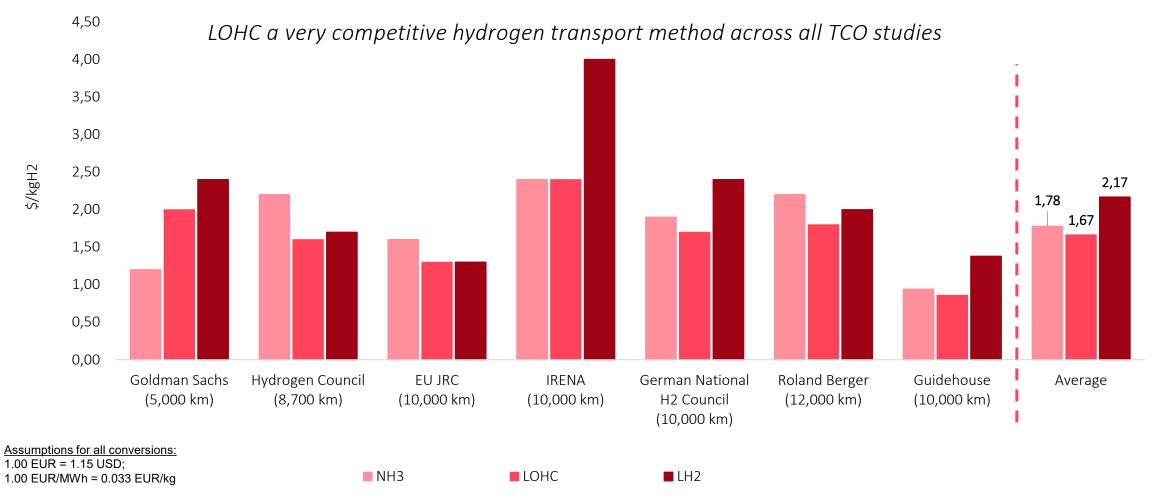
Superior safety

- No handling of molecular hydrogen
- Hardly flammable with flash point 130 °C, nonexplosive, even when loaded with hydrogen
- Hazard potential even smaller than for diesel and thus clearly superior to ammonia

Enhanced flexibility

Conventional liquid fuel infrastructure usable

Handling at ambient temperatures and pressure during storage and transport


No self-discharge over time – multi-month storage without losses

High efficency

- Competitive volumetric storage density of 54 kg hydrogen per m³ LOHC
- Carrier material commercially available and reusable hundreds of times
- Fuel cell grade hydrogen purity according to ISO 14687 by using off-the-shelf purification technology

Overview over Studies of Costs of large-distance Hydrogen Transport Time period from 2030 to 2050 depending on the study

TRACK RECORD

We have proven the LOHC value chain and are currently developing projects for international large-scale hydrogen trade routes

Containerized systems

- > Proven technology
- Successful implementation in Germany, Finland and the US

12 systems delivered

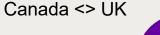
Proven LOHC value chain

- Successful implementation of a comprehensive LOHC value chain
- Currently operating at the hydrogen refuelling station Erlangen In

operation

Capacity scale up for LOHC plants

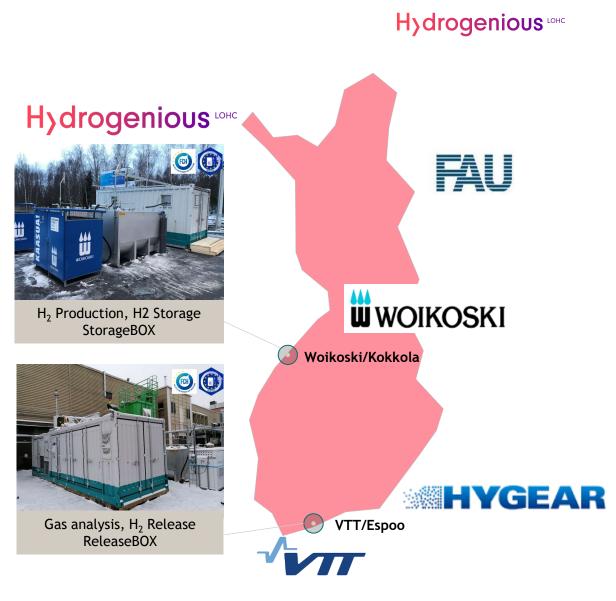
- Capacity
 - > Up to 24 H₂ tpd
- > <u>Reference Projects</u>
- Project Hector
- > Northern Green Crane
- H2A



Hydrogenious LOHC

Large-scale plants for int. H₂ import / export

- > Capacity
- > Up to 500 H₂ tpd
- > Reference Projects
- Joint cooperation
 - ADNOC-Jera-Uniper
 - UAE <> Europe
- > Cooperation Greenergy


Feasibility studíes

TRACK RECORD

Early Proof Points in Finland Kokkola – Espoo

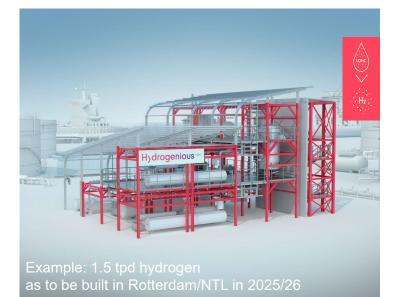
Successful Operation at -23°C

> Scope:	H2 Production, H2 Storage, Transport, Release via LOHC & Operation/H2-Quality Test
Project consortium:	HYGEAR Hydrogenious tot
Operation	Start: 11/2020 & 02/2021 End: 03/2022
> Input/Output	24kg (H ₂)/day
> Funding & Support	FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Hydrogenious LOHC

Skid-based industrial hydrogenation/dehydrogenation unit to match with renewables and hydrogen hubs

Example: 5 tpd hydrogen as to be built in Chempark Dormagen/GER in 2024

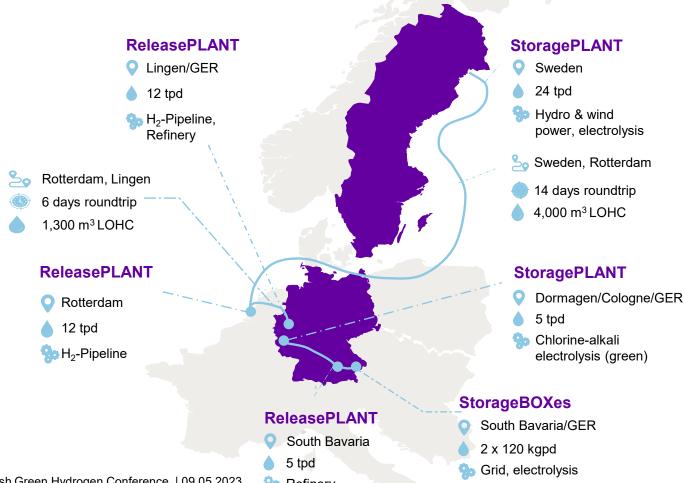

Hydrogenation process Exothermic, with solid catalyst

Heat Release

Approx. 10 KWh/kg H_2 , 200 – 250°C Approx. reaction pressure: 15 – 30 barg

German-Finnish Green Hydrogen Conference | 09.05.2023

Dehydrogenation process Endothermic, with solid catalyst


Heat Demand

Approx. 11 KWh/kg H_2 , 250 – 300°C Approx. reaction pressure: 2-3 barg

TRACK RECORD

German IPCEI pre-candidates

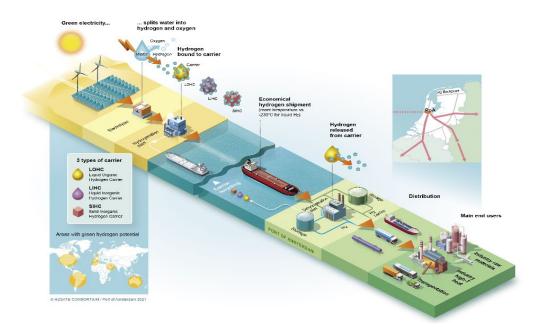
LOHC supply chain Sweden <> Netherlands <> Germany LOHC hub in South Bavaria/Danube triangle

Green Crane & Green Hydrogen@ Blue Danube

Northern

Building the LOHC infrastructure within Europe, erecting several storage & release plants

Both projects qualified in Germany in the IPCEI pre-selection process (among 62 others in Feb 2021) along with partner applications in Sweden and the Netherlands (part of fast moving RHATL wave)


TRACK RECORD

Port of Amsterdam-Hydrogenious-Evos NTL/Port of Amsterdam

Up to 1 mn green H₂ tpa imports final size

Feasibility study:	Conducted in previous H2Gate project with LOHC as ideal H ₂ carrier option
> Project consortium:	Port of Amsterdam
> Commissioning:	Before end of decade
Hydrogen storage and transport:	Up to 30 H ₂ ktpa [~100 tpd]

one million tons of green hydrogen

International hydrogen supply chains at scale Europes hydrogen supply by joint efforts on three continents

UAE/Abu Dhabi <> Europe

Canada <> UK

Morocco <> Europe

uni Jera

Greenergy

Hydrogenious LOHE

Hydrogenious LOHC

أدنــوك ADNOC HYDROGENIOUS AT A GLANCE

Established in 2013, we are the global leading technology pioneer for LOHC

Technology cooperation partners

Hydrogenious LOHC

>200

employees

>55 patent families

>80mn investor funding

Q&A

Kiitos!

Let's carry the new energy world together. Hydrogenious LOHC

Contact

Josef Schütz Business Development Manager josef.schuetz@hydrogenious.net

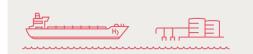
HYDROGENIOUS LOHC TECHNOLOGIES GmbH

Weidenweg 13 91058 Erlangen/Germany www.hydrogenious.net info@hydronious.net

World's 1st LOHC supplied hydrogen refueling station in Erlangen, Germany

Green H₂ supply chain scheme Solar Power – PEM Electrolyser – LOHC Storage – Transport – LOHC Release – HRS

HRS opened in 2022


Minimal footprint

Worldwide first underground storage of 1.5 tons of hydrogen via LOHC-BT (ambient conditions)

Hydrogen quality (fuel cell purity) according to ISO 14 687-2

Hydrogenious LOHC

LOHC logistics is easy and efficient: We utilize conventional liquid fuel infrastructure

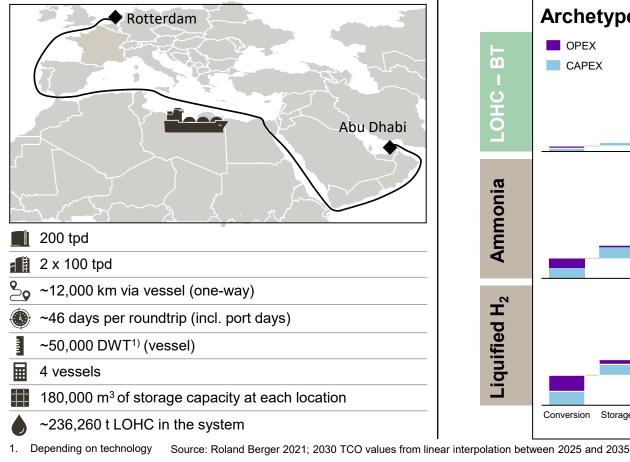
By ship

- Hydrogen transport capacity per trip: up to 17,000 t (VLCC)
- Ideal for large scale hydrogen transport over long distances
- Import of low-cost green hydrogen to consumption markets

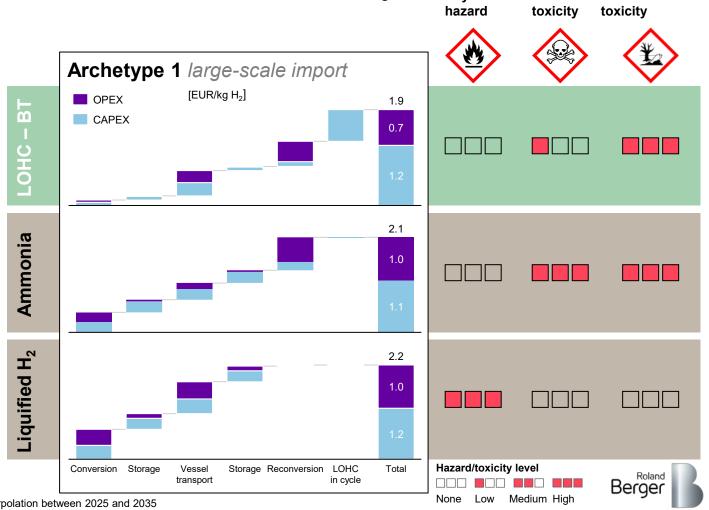
By train & barge

- > Hydrogen transport capacity per trip: up to **59 t**
- Ideal for transport and distribution over medium distances
- Highly flexible distribution enabling global market supply

By tank truck


- Hydrogen transport capacity per trip: up to 1.6 t
- Ideal for short distances and distribution
- Standard unpressurized aluminum tank
- Connecting isolated regions to the hydrogen world
- Simultaneous receiving and discharging of LOHC (up to 1,000 l/min)

Infrastructure


- Storage and transportation at ambient conditions
- > Easy and fast handling by pumping a liquid
- Low CAPEX due to reuse of conventional fossil fuel equipment
- Repurposing of infrastructure for port and other energy hubs as well as ship, rail and train

LOHC-BT with strong TCO competitiveness in long-distance and upside from advantageous hazard and toxicity profile versus NH₃

Archetype 1: Large-scale import – year 2030

German-Finnish Green Hydrogen Conference | 09.05.2023

Hydrogenious LOHC

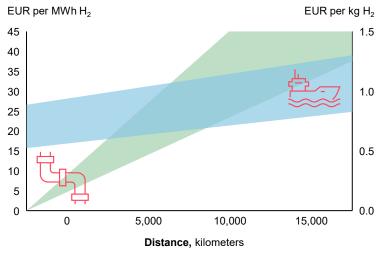
Environmental

Hazard and toxicity profile

Acute

Physical

Hydrogenious LOHC

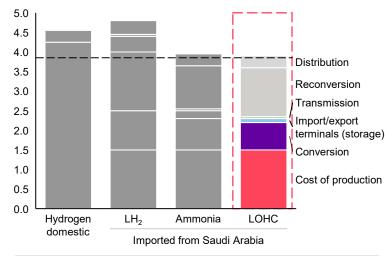

Various studies confirm that LOHC is a highly cost competitive, high potential mid-stream solution $\frac{1}{2}$ H₂ transport cost via ship (upper: liquefied H₂, lower: LOHC) H₂ transport cost via pipeline (upper: 48 inch new, lower: 48 inch retrofitted)

Guidehouse 66.33

Guidehouse: Covering Germany's green hydrogen demand: Transport options for enabling import

Cost comparison of shipping and pipeline hydrogen transport routes

Note: Pipeline transport assumes 48 inch (1,200 mm) in thickness, 12.7 GW and 80 bar for both new and repurposed pipelines

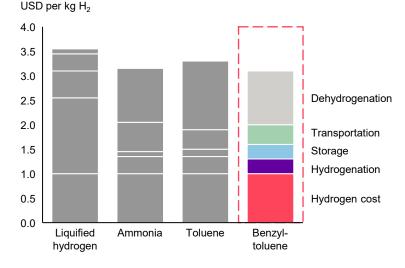

Long-term, LOHC is the most economic option for transport via shipping

Goldman 66.93 **Sachs**

Goldman Sachs: Carbonomics (2022)

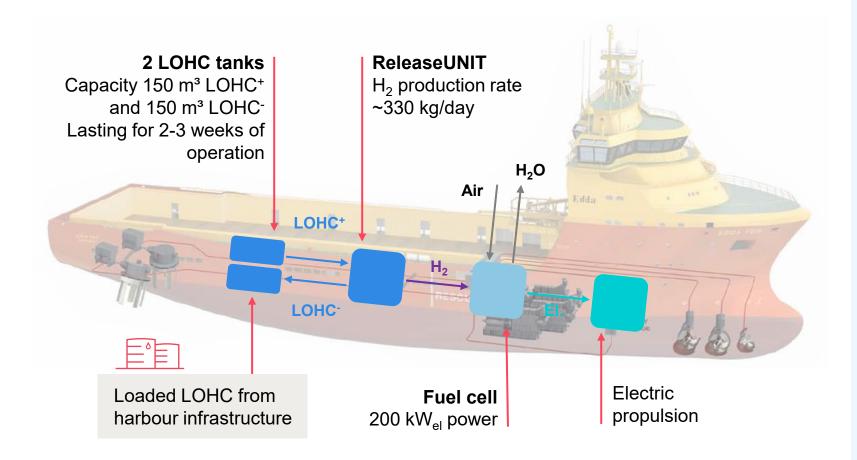
All-in costs for North-West Europe importing Liquid and chemical hydrogen storage in green hydrogen from Saudi Arabia in 2022

Cost of delivering green hydrogen from Saudi to Europe USD per kg H₂


LOHC as "the" hydrogen carrier in terms of TCO and other aspects

Lux research: Hydrogen economy- The Cost of storage (2022)

2022


Cost of storage and transport

LOHC, in particular BT well positioned vs. alternatives

Hydrogenious LOHC Maritime

In our Norwegian JV we work on making LOHC become a maritime fuel with commercial pilots on the way

Ø

Østensjø Rederi

JV formed in 2021

for development and commercialization of LOHC-BT fueled powertrain with Østensjø.

Partnerships established with

- JDA with Alma Clean Power for developing first-of-its-kind LOHC-SOFC system
- > System integrator for power management and electric drive
- > End-customers

Hydrogenious

First ships for integrated LOHCpowered on-board drivetrain: 2 LOHC-BT ready ships delivered, 4+ in order pipeline

First-of-their kind ships LOHC-BT ready hybrids with LOHC-BT rooms installed

Initially 200 kW LOHC-BT-fuel cell system to power vessel's auxiliary power

Upgrade to MW system powering vessel propulsion envisioned

