

Outstanding 2G Technology for Hybrid Solutions with 2G Gas Generator Technology in Abuja Yield and Cost Analysis of Pv-Gas Applications

The 2G Group

- Founded 1995 as factory for biogas gensets
- Headquarters in Heek / North West of Germany
- Manufacturing and distribution of gas generators for biogas, natural gas and landfill gas applications between 20kW – 4,500 kW electrical capacity each
- Biggest independent gas generator manufacturer in Europe
- Solution provider: development, project engineering, production, service and after sales support
- Since 2007 listed at the German stock market
- <u>Over 5,500 power plants in more than 45 countries</u> <u>worldwide</u> (about two per day since 2016)
- More than 1,000 of them are operated as hybrid with wind or solar already today

The 2G Group

Gas Generator Portfolio

Product Group	Power Range	Type of fuel	Basic Engine
G-Box	20 to 50 kW	Natural Gas	MAN / Toyota
filiUS®	50 to 150 kW	Biogas	MAN / 2G
2G-KWK-Series	100 to 400 kW	Natural Gas / Biogas	MAN
agenitor®	200 to 450 kW	Natural Gas / Biogas	MAN / 2G
avus	500 to 4,500 kW	Natural Gas / Biogas	Jenbacher / MWM / MTU / 2G

3.3 MW Jenbacher containerized

ufnahmedatum: 12/14/2015

Bilda

The 2G Group

Sales and Service Network: >5,500 gas generator plants in more than 45 countries 5

Design demand and our local content

Basic PV "fuel" data for Abuja

Monthly energy output from fix-angle PV system:

Max monthly PV energy: 54,500 kWh/M Max daily PV energy (/31): 1,758 kWh/d

Peak capacity risk 257 kW Average energy yield 59 kW

Basic PV data commercial analysis for Abuja

Installation with following assumtions:		350 kWp	Invest	1,200 \$/kWp	420,000 \$	360 NGN/\$
Location: Abuja			Solar			
All power usable		Invest	Interest	payback over	total capex	CAPEX / kWh
No service expenses		151.2 M NGN	20%	5 years		520,000 kWh/y
No damages		rem value				"fuel" cost
No replacements	year 1	151.2 M NGN	30.2 M NGN	30.2 M NGN	60.5 M NGN	116 NGN/kWh
 Optimized power management, 	year 2	121.0 M NGN	24.2 M NGN	30.2 M NGN	54.4 M NGN	105 NGN/kWh
thus, no batteries needed	year 3	90.7 M NGN	18.1 M NGN	30.2 M NGN	48.4 M NGN	93 NGN/kWh
	year 4	60.5 M NGN	12.1 M NGN	30.2 M NGN	42.3 M NGN	81 NGN/kWh
	year 5	30.2 M NGN	6.0 M NGN	30.2 M NGN	36.3 M NGN	70 NGN/kWh
	year 6	0.0 M NGN	0.0 M NGN	0.0 M NGN	0.0 M NGN	0 NGN/kWh
	year 7					

• These "best case" commercials hardly provide a viable and bankable business case;

Gensets will mitigate in efficiency due to lower load during PV productivity additionally;

The apparent risk of load fluctuations has to be compensated by

- Spinning reserve of underlying generators
- Energy buffer like batteries, boosting capex
- Optimized load analysis

Why changing to hybrid solutions environmentally? Hybrid solutions enable Grant total GHG emissions **GHG** emissions 0.35 kg/kWh per kWh net caloric value Benefitting from renewables per kWh electricity • 1.60 kg/kWh without battery storage demand substituting fossil fuels. 1.40 kg/kWh 0.30 kg/kWh **Reducing fuel dependency** ٠ 1.20 kg/kWh Hybrid solutions demand 0.25 kg/kWh a stable and reliable local, i.e. |1.00 kg/kWh 0.20 kg/kWh captive grid **Diesel 100% mineral** PHCN (gas turbines) to 0.80 kg/kWh large load spike capability Natural Gas 0.15 kg/kWhSolar cope with cloud covering Solar 0.60 kg/kWh Full Redundancy with genset eff. eff. and 0.10 kg/kWh and capacity 0.40 kg/kWh 38.0% el Ð 38.0% piped I 38.0% Hybrid solutions depend on Wind 0.05 kg/kWhCNG 0.20 kg/kWhDN. **Client load profile** Available and suitable space for 0.00 kg/kwh 0.00 kg/kWh www.gov.uk/government/uploads/syste installation @ calculated average m/uploads/attachment_data/file/69554/ electrical efficiency pb13773-ghg-conversion-factors-2012.pdf

Overall Hybrid solutions provide CO2 savings as combination

- of the achievable value of CO2 neutral renewables and
- the GHG emissions of underlying power generation technology

Why changing to hybrid solutions <u>commercially?</u> In Nigeria, just fuel expenses per kWh with fuel cost in NGN/kWh commonly used diesel gens are about 100 NGN. @ typical efficiencies 2G gas generator technology just 120 NGN With piped gas about 24 NGN. With CNG or LNG about **35 NGN** 100 NGN Solar hybrid installations 80 NGN are CAPEX intensive in relation to generation, cannot substitute generator capacity; 60 NGN Most hybrids still run > 85% on fossil fuel. NGN/kWh N/kWh Solar hybrid with diesel gensets 40 NGN generate power today at a very high price mix; 0 Z don't provide any remarkable commercial savings. 20 NGN Ŀ, Solar hybrid with 2G gas generator technology S 66 Ô Save about 75% fuel cost (piped gas vs. Diesel) 0 NGN Waste heat recovery provides additional savings 250 NGN/I 140 NGN/m³ Gas generator CAPEX is recouped after 1 year CNG / LNG Diesel Solar CAPEX can be covered with cash flow gains

Hybrids with 2G technology provide valid business cases.

How to change from diesel to gas power generation?

Based on a case study for a 3MW gas generator installation

This technology can only be utilized,

- If the gas generator technology is tailormade for your individual local application and
- If you benefit from a proper after sales service including a prolongated equipment warranty;

Investment is "recouped" after 1 year; annual savings will "last for ever".

Basic PV data commercial analysis for Lagos

	350 kWp	Invest	1,200 \$/kWp	420,000 \$	360 NGN/\$	100 NGN/kWh	Diesel and Solar	35 NGN/kWh	Gas and Solar
	Solar Installation commercials			Solar	diesel gensets	average cost @	2G Generators average cost @		
	Invest	Interest	payback over	total capex	CAPEX / kWh	@ inflation of	solar share of	@ inflation of	solar share of
	151.2 M NGN	20%	5 years		476,000 kWh/y	5%	10%	5%	10%
	rem value				"fuel" cost	fuel cost	mixed cost	fuel cost	mixed cost
year 1	151.2 M NGN	30.2 M NGN	30.2 M NGN	60.5 M NGN	127 NGN/kWh	100 NGN/kWh	<u>103 NGN/kWh</u>	35 NGN/kWh	43 NGN/kWh
year 2	121.0 M NGN	24.2 M NGN	30.2 M NGN	54.4 M NGN	114 NGN/kWh	105 NGN/kWh	106 NGN/kWh	37 NGN/kWh	44 NGN/kWh
year 3	90.7 M NGN	18.1 M NGN	30.2 M NGN	48.4 M NGN	102 NGN/kWh	110 NGN/kWh	<u>109 NGN/kWh</u>	39 NGN/kWh	44 NGN/kWh
year 4	60.5 M NGN	12.1 M NGN	30.2 M NGN	42.3 M NGN	89 NGN/kWh	116 NGN/kWh	<u>113 NGN/kWh</u>	41 NGN/kWh	45 NGN/kWh
year 5	30.2 M NGN	6.0 M NGN	30.2 M NGN	36.3 M NGN	76 NGN/kWh	122 NGN/kWh	<u>117 NGN/kWh</u>	43 NGN/kWh	<u>45 NGN/kWh</u>
year 6	0.0 M NGN	0.0 M NGN	0.0 M NGN	0.0 M NGN	0 NGN/kWh	128 NGN/kWh	<u>115 NGN/kWh</u>	45 NGN/kWh	<u>40 NGN/kWh</u>
year 7									

- Solar starts to improve overall cost once solar "fuel" cost is below genset fuel cost
- Solar can contribute to the overall energy solution

Engine Periphery

Control and regulation of

- Cooling / combustion air flow at choosen design temperature to
- avoid any deratings

24/7 telemonitoring from Germany

Fully automatic operations

The chosen periphery defines the overall technical reliability

High-end engines

Standarized design to optimize / maximize

- Manufacturing
- Reliability
- Longterm quality
- Service and maintenance
- Compatibility
- Spare parts logistic

However, any chain is only as strong as it's weakest part.

Installation:

- Adjusted to space availabilities
- on top of a hospital
- Noise proven down to 45 dB(A) only
- Vibration free
- Assembly and commissioning in less than 10 hours
- Flexible and removable

Very often, commercial savings generate space availability.

Waste Heat Recovery: "steam for free" to substitute fuel expenses

Due to the combustion process in all combustion engines like cars, diesel or gas engines etc., plenty of energy dissipates as heat, mainly in form of

- hot exhaust gas (up to about 500°C), normally lost through the chimney and
- hot jacket water (about 90 93°C), normally dumped within heat dumpers.

This "co-generated heat" 2G can utilize to boost the overall efficiency.

The exhaust gas energy, i.e.

- exhaust mass and
- exhaust gas temperature, is utilized to generate steam.

CHP Co-Generation Newer Module Cenerator Motor Motor Motor enerate

A 2G gas generator of 1 MW can generate

- about 600 kg steam @ 10 bar per hour, thus
- substituting about 1,500 I diesel each day you need today to operate the same steam within your fossil fueled boiler.

This can save (1,500*365 =) 550,000 l/y diesel

The steam generator substitutes about 2 mio I diesel p.a.

Waste Heat Recovery: Chilling water to substitute electrical chiller demand

Today, your generators provide you with power for

- normal consumers and
- large electrical chillers.

Our technology provides chilling capacity from waste heat recovery:

Our technology can reduce energy and installation demand by 30%.

Project Engineering – customized installations @ optimized conditions:

2G Carefree Maintenance

2G station Nigeria Services Ltd. with its operational base in Ikeja structures and conducts our carefree maintenance services in cooperation with

- 2G certified local "2G Partners" and
- 2G technicians from Germany

CARE BEFORE REPAIR

Instant Trouble Shooting

24/7 telemonitoring

Operational supplies

Preventive Maintenance

Based on daily operation by your operator on-site

Results in prolongation and upgrade of initial warranty and Technical availability of more than 95%

Load Spike Capability

High quality gas engines

can cope with load spikes of about 10 – 15% only

Hybrid Capability

Whenever clouds cover a solar installation,

- the pv power disappears immediately,
- causing a significant load spike,
- your generators have to cover instantly

The load spike capability of the grid stabilizing equipment defines the usable hybrid capacity.

Our Central Load Stabilizer can provide much more.

Operational Range

High quality gas engines cannot be operated continuously below about 40 - 50%.

Nigeria Gas Price Regulations Overview

Gas Pricing

- "DSO" reg. gas price 95NGN/m³
- Linked to piped gas usage

Gas Flare capturing

- Trucking without pipeline usage
- Not linked to DSO
- Demands larger trucking distance
- Demands higher logistical cost
- Feasible with large volume gas capacities
 - As LNG
 - As CNG with composite trailers
- And for energy efficient technologies
 - High electrical yield
 - Waste heat recovery

Logistics Example

Energy demand today

- Average 1 MW power
- Steam boiler demand

3,500,000 I diesel / year <u>500,000</u> I diesel / year 4,000,000 I diesel / year 11,000 I diesel / day

Energy demand with 2G generator solution:

- Average 1 MW power
- Steam demand, covered with waste heat recovery

2,190,000 m³ natural gas / year <u>0 m³</u> 2,190,000 m³ gas / year 6,000 m³ gas / day

Thank you for your attention!

Jürgen Ophey 2G station for Africa GmbH Germany

Phone:+ 49 (0) 171 5357907Phone:+234 906 0000 776Mail:info@2g-africa.comWeb:www.2g-africa.com

F

