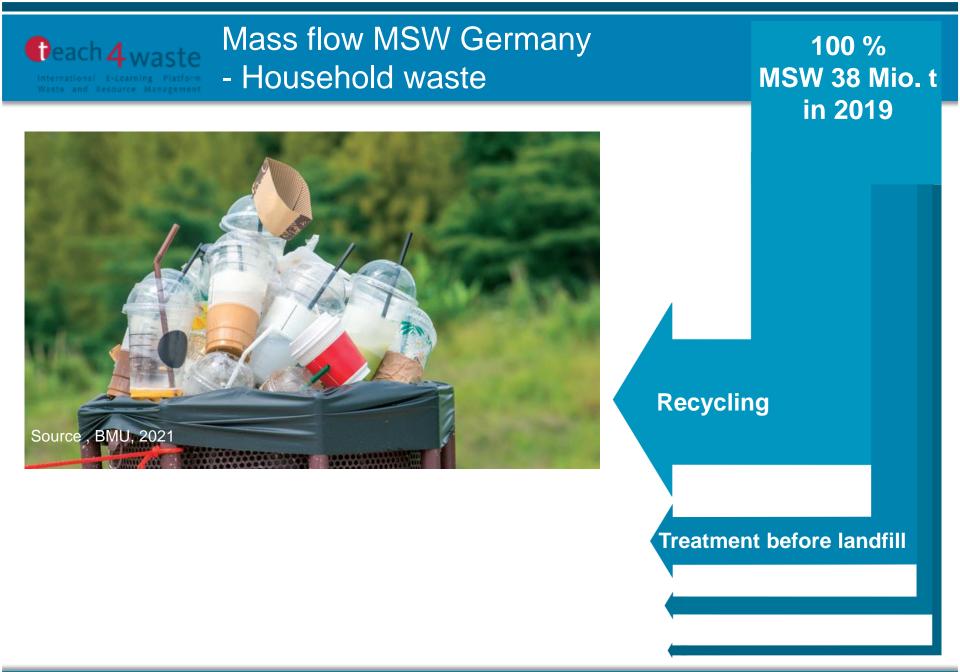


Waste and resource management in Germany and EU


Present and future challenges

- Climate change
- Resource shortage
- Marine litter and pollution of aquatic systems
- Species extinction and human health

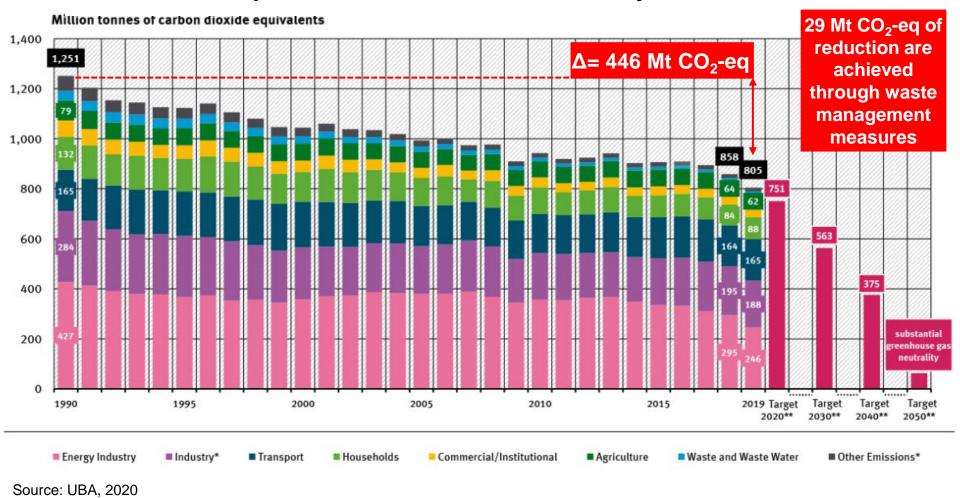
all of these areas interact with waste management – driving forces

teach4waste I Waste management in Germany I Slide 3

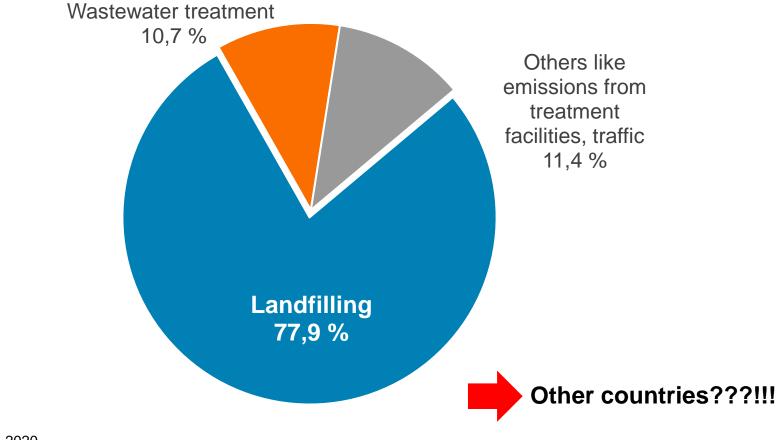
Binding recycling rates

Type of waste	2025 [%]	2030 [%]	2035 [%]
MSW	55	60	65
Packaging	65	70	
Plastic	50	55	
Wood	25	30	
Ferrous metals	70	80	
Aluminium	50	60	
Glass	70	75	
Paper and cardboard	75		
Biowaste, required rates in preparation 2023			

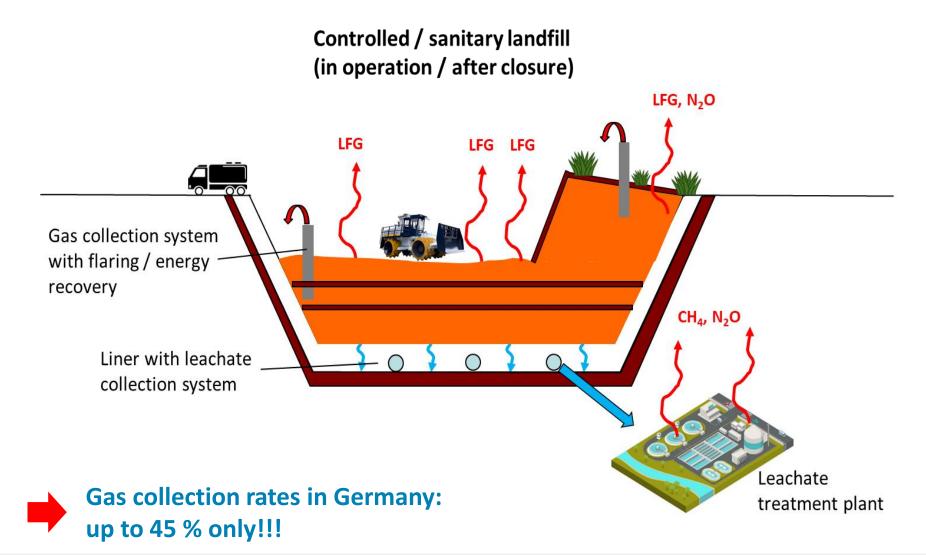
Binding recycling targets


	2022	2035*	2040*
Reduce disposal on landfills to		10 %	10 %*
Prohibition on disposal of untreated waste	Х		

*Exceptions for certain countries


Mitigation of GHG emissions in Germany - Sector waste management

Development GHG emissions in Germany 1990 - 2019



GHG sources from the sector waste and wastewater treatment in 2018 - without CO_2 from biomass use

Source: BMU, 2020

Peach 4 waste GHG emissions from landfill - Sources

Mitigation of GHG emissions in Germany - CO₂ emissions and credits

The total effect of waste management measures results from the sum of GHG emissions and GHG credits:

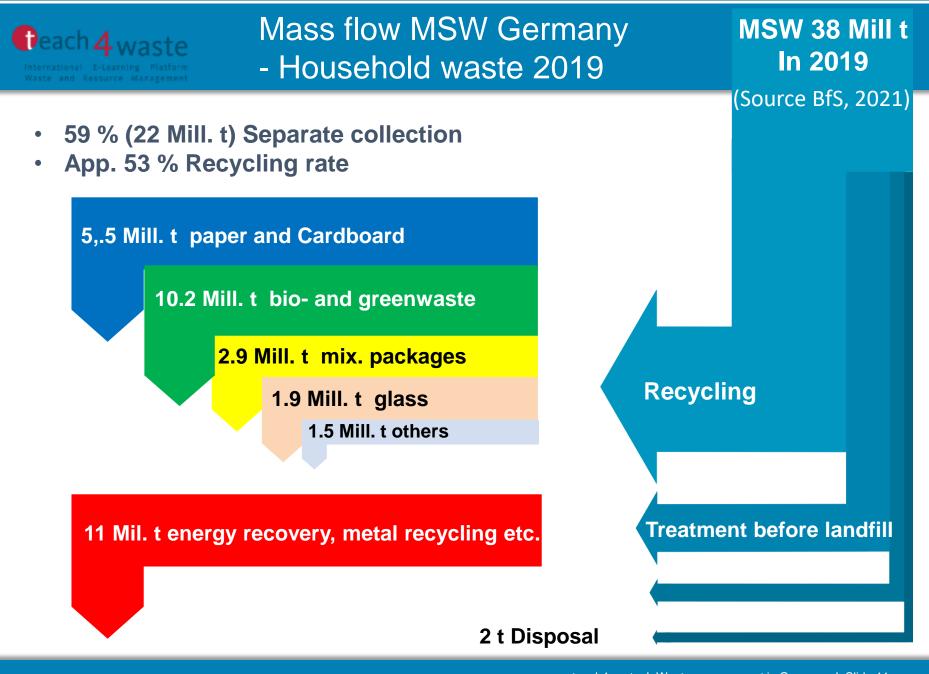
$$CO_{2,eq,total} = \sum_{i=1}^{n} Emissions_i - \sum_{k=1}^{n} Emissions Credits_k$$

GHG mitigation in Germany from the sector of waste management 2018

- GHG emissions 29 Mio. t CO₂-eq
- GHG credits through recycling and energy recovery
- 20 Mio. t CO_2 -eq

Total GHG avoidance

49 t CO₂-eq/a 0.61 t CO_2 -eq/cap


Source: UBA 2018 (modified)

Collection systems - Germany

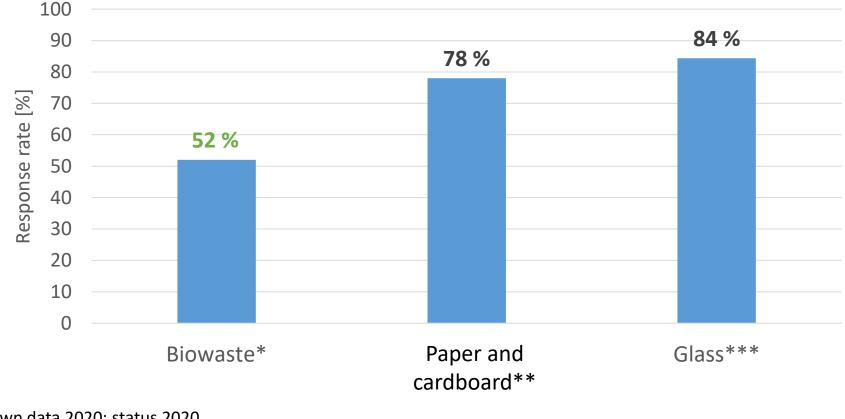
International E-Learning Platform Waste and Resource Management

Peach 4 waste

teach4waste I Waste management in Germany I Slide 11

GHG credits of recycling measures as of 2011 and projected for 2030 "optimised"

teach4waste | Waste management in Germany | Slide 12

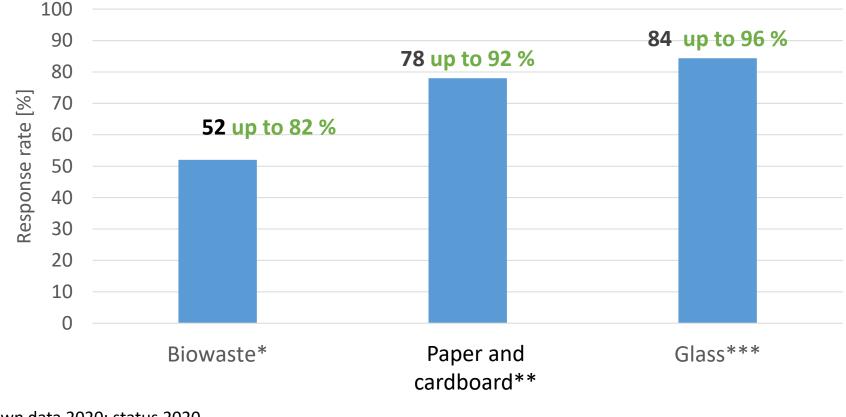

Recovery of plastics waste - GER reality 2019

@each4waste

Plastics	Amount to recycling	Proportion	Amount of Recycling	Proportion Of Recycling
Unit	[Mg]	[%]	[Mg]	[%]
Foils	152.664	13,5	150.334	98,5
Plastics high purity	193.001	17,1	185.016	95,9
Mixed polyolefins	37.881	3,3	37.166	98,1
Mixed plastics	733.249	64,8	39.044	5,3
3D-plastics	14.328	1,3	13.155	91,8
Plastics total	1.131.123	100	424.715	37,5

Peach 4 waste Collection rates of different waste fractions

Collecting rates

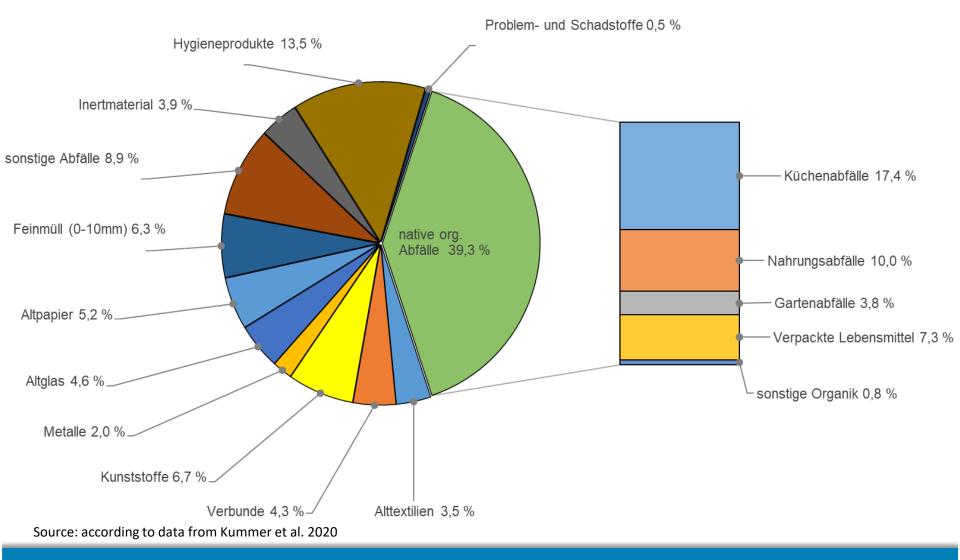


* own data 2020; status 2020 ** UBA, 2020; as of 2019 *** UBA, 2020; as of 2017

teach4waste I Waste management in Germany I Slide 14

Peach 4 waste Collection rates of different waste fractions

Collecting rates


* own data 2020; status 2020 ** UBA, 2020; as of 2019 *** UBA, 2020; as of 2017

Peach 4 waste Sources of impurities and collection rates

- 90 % of contaminants / impurities are entered via kitchen waste
- 80 % are carried in via approx. 5 % heavily polluted bio bins
- Low collection rates and high levels of contamination originate from problematic socio-urban settlement structures

Waste composition - Germany 2018

11 Mio. Mg Food waste in Germany

- 52 % from private households
- 16,6 up to 21,6 Mrd. €/a
- 75 kg/cap. and y*

*BMEL, 2021

Foto: UBA

Foto: Welthungerhilfe

teach4wasteebdWawtesreanageraleverim Getumpany Floiblide 18

Qualitative and quantitative avoidance:

Examples:

- Demand driven production
- Kind of
 - Standards
 - Agricultural production
 - Refinement
 - Distribution local
 - Consumption creation of a changed consciousness

Preventive

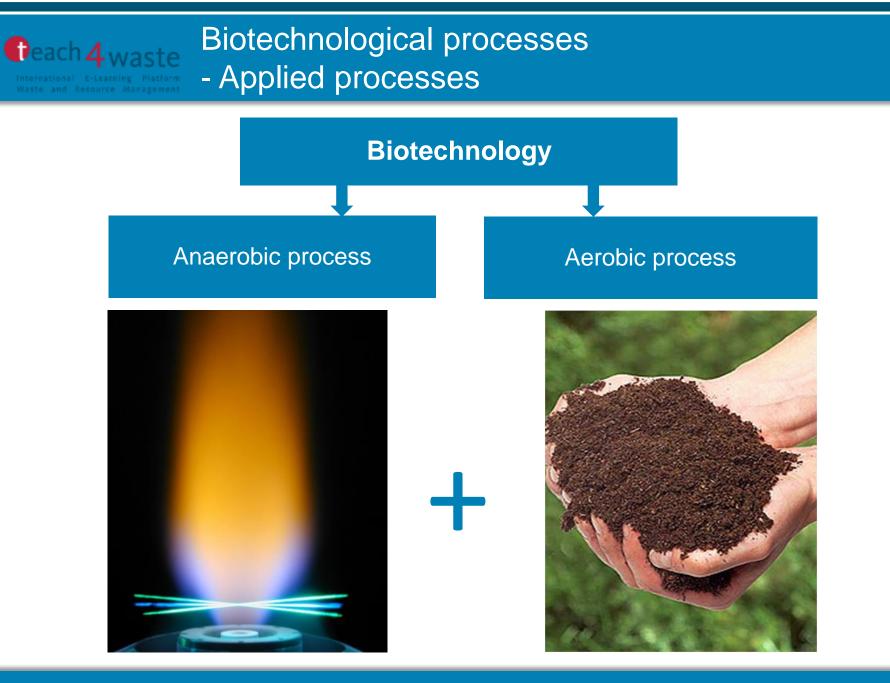
Environmental protection

Aftercare

Impacts on recycling

Lower:

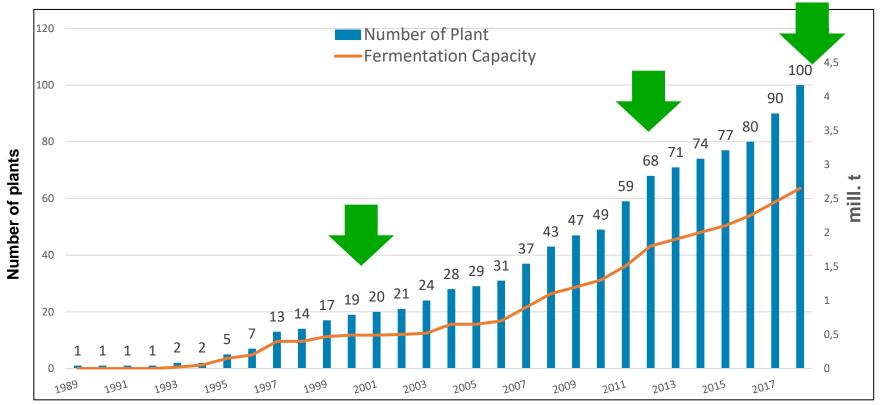
- Transport effort
- Treatment effort
- Lower energy consumption and emissions
 - Composting (aerobic process)
 - Digestion (anaerobic process)
 - Biochar production (pyrolysis process)


Aftercare

Preventive

Environmental

protection


teach4wastereach4watesteanagetaleverim Gerungeny Folglige 20

teach4waste | Waste management in Germany | Slide 21

Development of fermentation in Germany - Push effects

International E-Learning Platform Waste and Resource Managemen

Push effects:

- Renewable Energy Act (2000) and further amendments, funding instrument of renewable energies
- KrWG (2012): Mandatory separate collection of biowaste since 2014
- CO_2 -Tax

Source: Fachverband Biogas, 2018, 2018 data based on forecast

Prof. Dr.-Ing. Klaus Fricke (klaus.fricke@tu-bs.de) Dipl. Ing., RA Christiane Pereira (christiane@terramelhor.com.br)

Technische Universität Braunschweig

Comparison of heavy metal contents of selected total waste & biowaste composts

Heavy metals	Germany Total waste compost 1980*	Spain Total waste compost (SCT 2013)**	France Total waste compost (SCT 2007) ^{**}	GER Organic waste (BGK 2020)***
Unit	[mg/kg dry matter]			
Cadmium	3,2	1,4	1,7	0,38
Chrome	83	111	70	19,6
Copper	266	158	179	40
Mercury	2	0,3	0,9	0.09
Nickel	55	29	41	11,6
Lead	229	97	162	26,4
Zinc	1.000	351	566	156

*Wallfahrt, 1983; **Carrera mdl. communication, 2013; *** BGK, 2020

Selected organic pollutants in compost of different origin

Organic pollutants	Organic waste compost 1991 ³	Organic waste compost 2002 ⁴	Organic waste compost 2020 ⁵	Wet waste compost 1991 ³	Total garbage- compost ³
PCB ¹⁾ mg/g dry matter	0.26	0.03	n.a.	0.94	1.49
PAH ²) mg/g dry matter	1.71	2.5	1.00	3.37	4.41
PCDD/F ³⁾ ng TE BGA/kg TS	12.1	9.2 ⁶	4.5 ⁶	50	103

1) DIN, sum of all PCBs

2) 6 PAHs regulated in the Drinking Water Ordinance (FI, BbFI, BkFI, BaP, BPer, IP).

3) (Fricke et al., 1991)

4) Anonymous (2003)

5) BGK (2020)

6) according to WHO-TEQ 2005, incl. 1/2 BG

@each4waste Emissions from composting and fermentation

International E-Learning Platform Waste and Resource Management

Methane	Unit	Composting	Fermentation	
Spec. load	kg CH ₄ /Mg biowaste	1.4	2.8	
GWP	kg CO _{2,eq/kg} CH ₄	25	25	
CO _{2,eq}	kg CO _{2,eq/t} biowaste	35	70	
Laughing gas				
Spec. load	kg N ₂ O/Mg biowaste	0.05	0.05	
GWP	$kg CO_{2,eq/kg} N_2 O$	298	298	
CO _{2,eq}	kg CO _{2,eq/t} biowaste	14.9	14.9	
Total	kg CO _{2,eq/t} biowaste	49.9	84.9	

Specific biogas yields for kitchen and garden waste from the organic waste bin

Raw material	Quantity	CH ₄ fraction
Units	[m³∕t digester input]	[% by volume]
Biowaste mixture from garden and kitchen waste	75 - 136	53 - 63
Organic waste - kitchen waste	123 - 178	53 - 68
Green waste without tree/shrub cuttings	40 - 90	n.a.