

Impact of renewable energy expansion on national grids – Challenges and viable solutions

Christoph Müller, RWTH Aachen - Institute for High Voltage Technology (IFHT) mueller@ifht.rwth-aachen.de

www.german-energy-solutions.de/

Supported by

on the basis of a decision by the German Bundestag

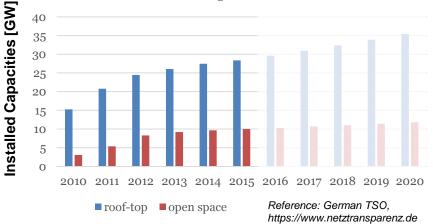
- 1. Introduction
- 2. Basics System Overview
- 3. Challenges and Solutions for Grid Integration of Renewable Energy Sources
 - a. Market Perspective
 - b. Transmission Grid Perspective
 - c. Distribution Grid Perspective
- 4. Summary

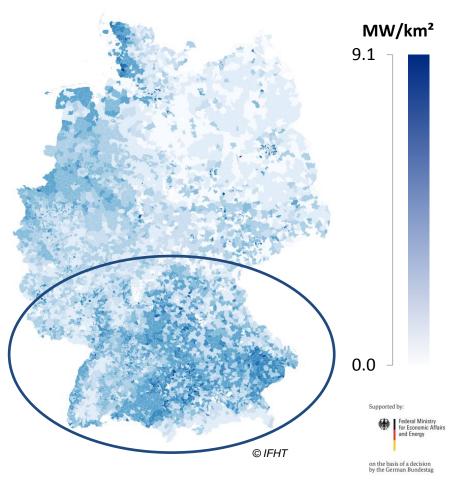
Supported by:

1. Introduction

- 2. Basics System Overview
- 3. Challenges and Solutions for Grid Integration of Renewable Energy Sources
 - a. Market Perspective
 - b. Transmission Grid Perspective
 - c. Distribution Grid Perspective
- 4. Summary

Supported by:

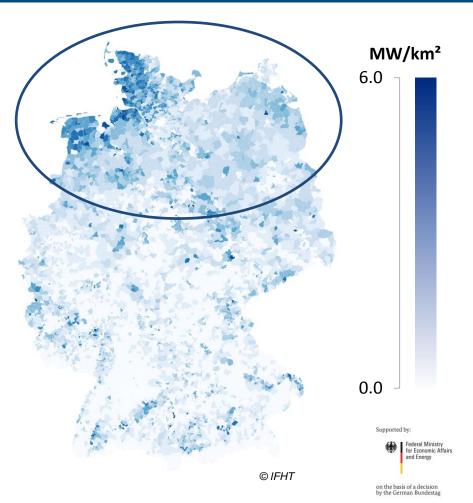




Introduction

- Geographic concentration of PV expansion in southern regions with high solar radiation and large roof surface
- Ratio of installed capacities of roof-top and open space PV units: ~75:25

Installed capacity: roof-top & open space



Introduction

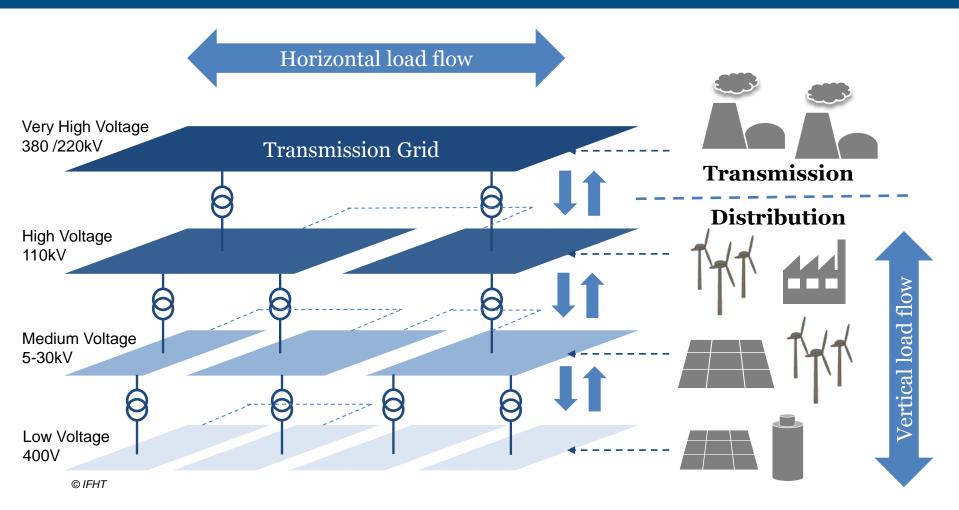
- Geographic concentration of onshore wind energy expansion
- Expansion mostly offshore and in northern regions with high wind velocities
- Development of wind turbines with hub heights of >150 m and rotor diameters of >120 m
- More efficient use of wind power in low wind regions
- In future: expansion of onshore wind turbines in high wind (north) and low wind regions
- Utilization of total potential surface

1. Introduction

2. Basics – System Overview

- 3. Challenges and Solutions for Grid Integration of Renewable Energy Sources
 - a. Market Perspective
 - b. Transmission Grid Perspective
 - c. Distribution Grid Perspective
- 4. Summary

Supported by:



Basics – System Overview

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Basics – System Overview

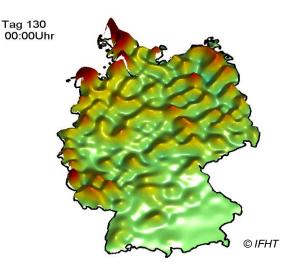
• Grid characteristics of renewable energies:

	Wind	Photovoltaics
Voltage level	Low voltage (approx. 0%) Medium voltage (approx. 48%) High voltage (approx. 42%) Very high voltage (approx. 10%, Offshore)	Low voltage (approx. 69%) Medium voltage (approx. 26%) High voltage (approx. 5%) -
Number of Units	approx. 25.000	approx. 1.500.000
Geographic concentration	North & Offshore (regions with high wind velocities)	South (regions with high solar radiation)
Seasonal generation	Autumn -> Winter -> Spring	Spring -> Summer -> Autumn
Intraday generation	volatile generation at 24 hours a day	generation just at daylight
Network connection point	directly to medium and high voltage	mostly low voltage (house connection point)
Congestions	Transmission grid -> thermal overload	Distribution grid -> voltage limit violation

Christoph Müller, RWTH Aachen - Institute for High Voltage Technology (IFHT)

- 1. Introduction
- 2. Basics System Overview
- 3. Challenges and Solutions for Grid Integration of Renewable Energy Sources
 - a. Market Perspective
 - b. Transmission Grid Perspective
 - c. Distribution Grid Perspective
- 4. Summary

Supported by:



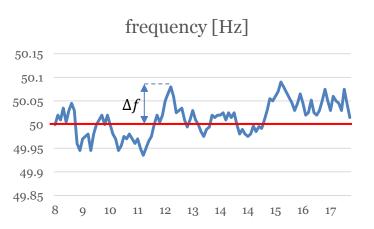
Challenges and Solutions – Market Perspective

- Increasing volatile feed-in of renewable energies
 - Wind Onshore
 - Wind Offshore
 - Photovoltaics
- Rising flexibility requirements for the energy system to guarantee security of supply
- Balancing of generation and load by different flexibility options
 - Electrical storages
 - International electricity exchange
 - More flexible conventional power plants (higher power gradients, shorter downtimes etc.)
 - Flexible loads/demand side management (e.g. Power2X)

Hourly feed-in of onshore wind: feed-in with regional and temporal dependency

by the German Bundestas

Supported by

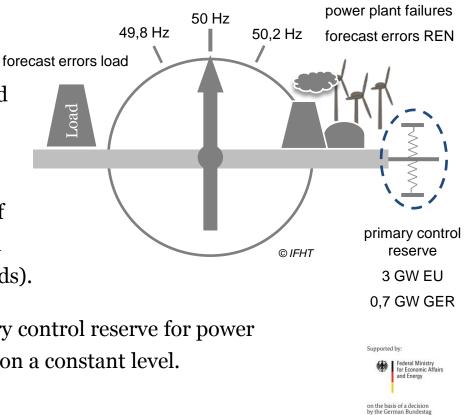

Supported by

on the basis of a decision by the German Bundestas

Federal Ministry for Economic Affairs and Energy

Challenges and Solutions – Market Perspective

- Imbalances of generation and load can occur due to:
 - Power plant failures
 - Forecast errors of REN
 - Forecast errors of load
 - Grid losses
- Undersupply: frequency lower than rated frequency
- Oversupply: frequency higher than rated frequency
- Requirement for control reserve
 - Goal: adherence of power balance and to guarantee frequency stability (50 Hz)
 - Deviation control of frequency deviations due to imbalances in load and generation (active power control)
 - Positive control reserve: provision of power by power plants
 - Negative control reserve: curtailment of power or switching on of additional loads (e.g. Power2Heat)

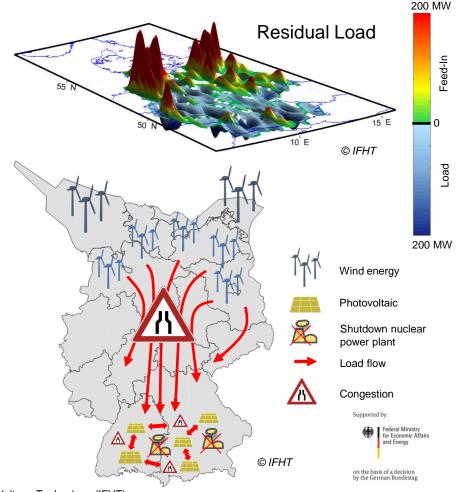


Challenges and Solutions – Market Perspective

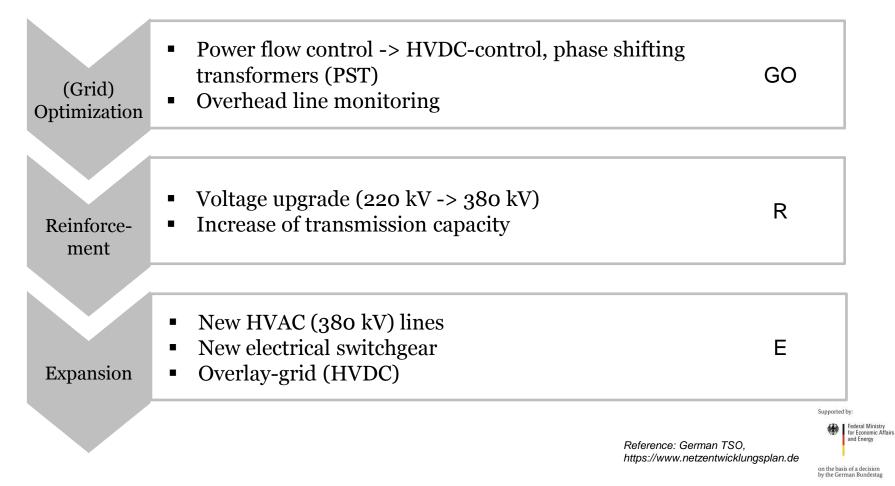
- The Transmission System Operators (TSO) are responsible for power balancing
- There are three qualities of control reserve
- Primary control reserve: Automated and fast balancing of frequency deviations and stabilization of the grid within 30 seconds.
- Secondary control reserve: Balancing of imbalances in a control area of a TSO within 5 minutes (activation already after 30 seconds).
- **Minute reserve:** Replacement of secondary control reserve for power balancing. Balancing for at least 15 minutes on a constant level.

- 1. Introduction
- 2. Basics System Overview
- 3. Challenges and Solutions for Grid Integration of Renewable Energy Sources
 - a. Market Perspective
 - b. Transmission Grid Perspective
 - c. Distribution Grid Perspective
- 4. Summary

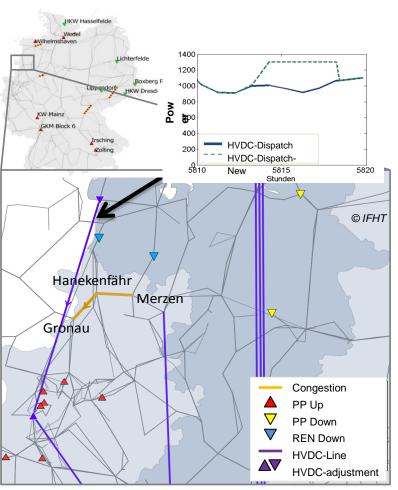
Supported by:



- Generation concentrates in the north
 - Main drivers: Wind Onshore and Offshore
- Load centers are near big cities and industry regions
- Less generation capacity in the south due to nuclear phase-out in Germany
- Transit of electricity from Scandinavia through Germany to southern Europe
- Flow of electricity from the north to the south of Germany
- Generation and demand pattern show an energy transport problem
- Need for transmission grid expansion


German Grid Development Plan (GDP)

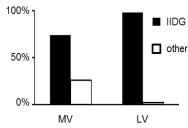
- The German TSO's create the GDP every second year
- Goal: In the GDP the future transmission grid is planned to guarantee an efficient electricity transport
- NDP contains several scenarios that describe possible future developments for different simulation years (e.g. NDP 2016: 2030 & 2035)
- Minimization of transmission grid expansion / GOREprinciple
- **Grid Optimization prior Reinforcement prior Expansion**



- Temporary solutions until grid expansion proceeds
- Short-term remedial actions for elimination of network congestions and to guarantee system security, e.g (n-1)-security
 - Redispatch: Intervention of the TSO in the power plant dispatch in order to guarantee system security
 - REN feed-in management / Peak shaving
 - HVDC-adjustment
 - Reserve power plants (system services)
 - Power2Gas in the north & transport of gas by gas pipelines to power plants in the south
- No alternative for required grid expansion in the long run!

- 1. Introduction
- 2. Basics System Overview
- 3. Challenges and Solutions for Grid Integration of Renewable Energy Sources
 - a. Market Perspective
 - b. Transmission Grid Perspective
 - c. Distribution Grid Perspective
- 4. Summary

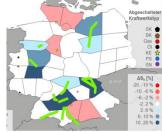
Supported by:



Changing conditions in distribution grids

Generation / Storage / Loads

Share of IIDG for LV and MV in a distribution system with >180,000 distributed generators [1]

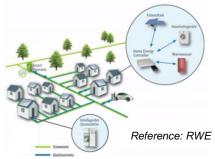

- Different powerflows & new technologies
- New marketing concepts
- **Increasing ICT** infrastructure

- 1. operational requirements
- Implications for normal 2. and faulty operation
- Services / requirements 3. of the overlayed grid

Changing conditions in transmission grids

Decreasing number of rotating masses/inertia

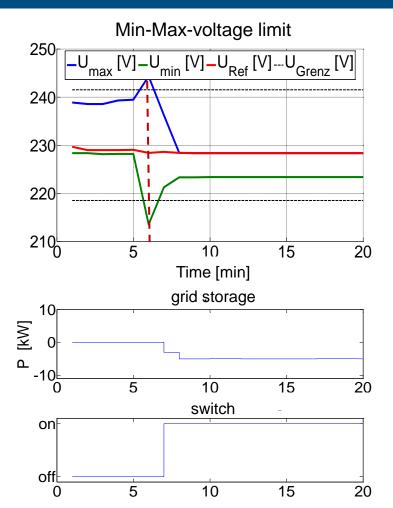
- Spatial divergence generation <-> load
- Providing ancillary services increasingly critical



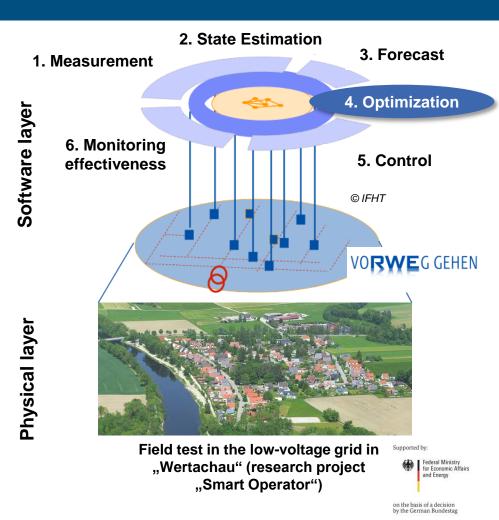
- Future smart grid
 - Smart components monitor the state of the electrical grid and keep balance between generation and load
 - Goal: Efficient use of regional infrastructure through smart operation/control (optimized grid operation)
 - Controllable loads (e.g. e-mob, white goods), storage (gridand home storage), new equipment (voltage regulated transformer, switch)
- Further Challenges
 - High complexity in possible operation points and options in action
 - Control in "real time" with limited resources (Hardware)

Need for an intelligent control system with an online-self-learning algorithm (smart operator)

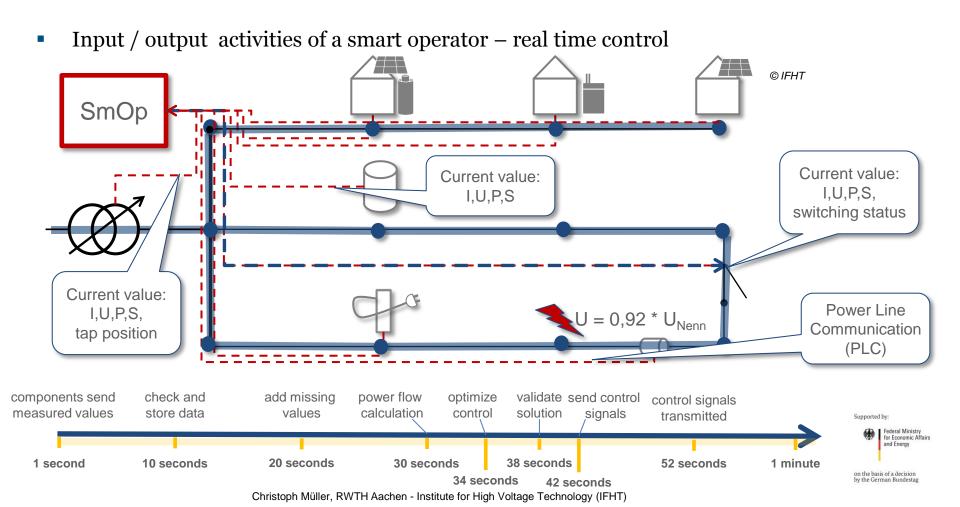
Supported by:


on the basis of a decision by the German Bundestas

- Smart Operator: Process of development
 - 1. Simulation based conceptual design
 - 2. Implementation on used hardware
 - 3. Validation with real grid components in the test center / laboratory
 - 4. Collecting operating experience in field tests



Christoph Müller, RWTH Aachen - Institute for High Voltage Technology (IFHT)



- Control options in distribution grids:
 - Feed-in management
 - Reactive power control
 - on-load tap-changer
 - Flexibilities from private households
- Central intelligence controls low-voltage grid
 - Self-learning algorithm
 - Learning from information from measurements and meteorological data
 - State estimation for determination of current grid state
- Day-ahead forecast for efficient battery usage
- Use of powerflow calculations for validation of switching action
- Field tests show the successful operation
 - Day-ahead forecast is preventing invalid grid states in over 90% of cases

- 1. Introduction
- 2. Basics System Overview
- 3. Challenges and Solutions for Grid Integration of Renewable Energy Sources
 - a. Market Perspective
 - b. Transmission Grid Perspective
 - c. Distribution Grid Perspective
- 4. Summary

Supported by:

Summary

- 1. REN installed capacities and REN feed-in have been increased significantly and further expansion is expected in the next years
- 2. Spatial divergence generation <-> load: no regional balance
 - Energy transport problem in the transmission grid
 - Need for **transmission grid expansion** (Grid Development Plan)
 - Principle: Grid Optimization prior Reinforcement prior Expansion
 - Temporary solutions: Short-term remedial actions for elimination of network congestions
- 3. Volatile feed-in of renewable energies requires the **expansion of smart distribution grids** (smart grids)
 - Rising number of Prosumers (Producers and Consumers)
 - Need for flexibility and control options in distribution grids
 - Need for good state estimations & forecasts and smart operation (software)

Federal Ministry for Economic Affairs and Energy

Supported by

on the basis of a decision by the German Bundestag

Thank you for your attention!

Christoph Müller RWTH Aachen Institute for High Voltage Technology (IFHT) mueller@ifht.rwth-aachen.de

Supported by:

on the basis of a decision by the German Bundestag