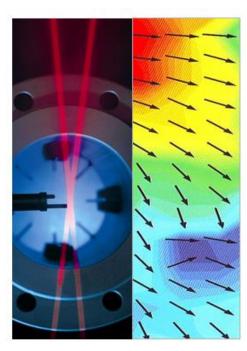
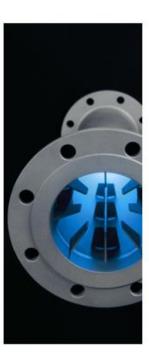


Thai - German Conference Bangkok, Thailand, 20 November 2017

Biogas Monitoring – "Why and How?"


Jan Talkenberger, Manager International Sales, Binder GmbH


Introduction

- Binder's core business is Gas Flow Metering and Control.
- Aeration Control System & Digester Gas Flow Metering & Gas Analysis

Real Gas Flow Calibration

Gas Flow Conditioning

Gas Flow Measurement

Gas Flow Control

Binder Group AG Finance Holding

Binder Engineering GmbH Sales & Service Companies in DE / F / CH / NL / B / China, Singapore, Malaysia

BINDER GmbH Manufacturing Company for Gas Flowmeter, Gas Analyzer and Control Systems
with following products: COMBIMASS® / VACOMASS® / CAMASS®

INSTRUM AG Manufacturing Company for Stainless Steel Pressure Regulators and Valves

BETA B.V. Manufacturing Company for Pressure and Temperature Switches

www.bindergroup.info

Contact Persons

Jan Talkenberger
Manager International Sales
jan.talkenberger@bindergroup.info
+49 1733069903
Binder GmbH
Buchbrunnenweg 18
89081 Ulm, Germany

Alex Hwong
Sales Director South East Asia Pacific
alex.hwong@bindergroup.info
+60 192234005
B-3A-25 Blk Bougainvillea, 10 Boulevard,
Lebuhraya Sprint
47400 Petaling Jaya, Selangor, Malaysia

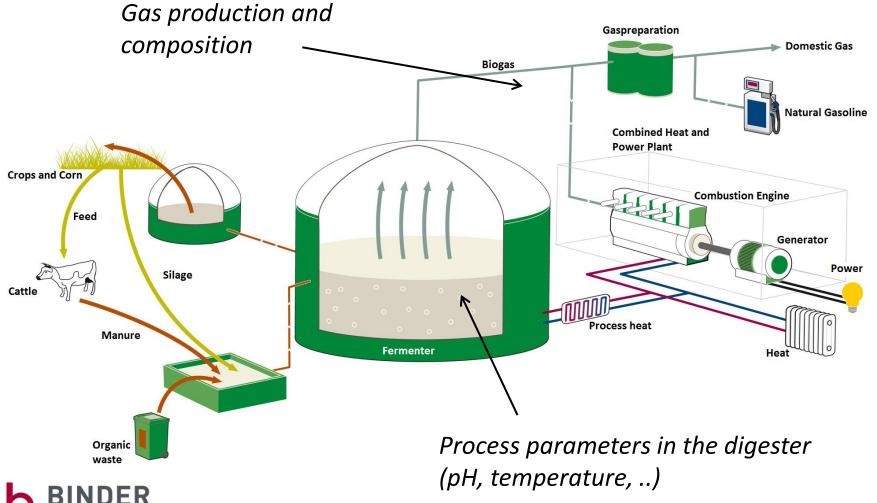
SEAP Set-Up

- Binder Sub/Rep.Office
 - Binder Distributor/Partner

★ Service Center

Thai – German Biogas Conference, Bangkok, Thailand, 20 November 2017

- Biogas Plant Monitoring
- Biogas particularities
- Technology


Why is it necessary to monitor Biogas Plants?

Parameters to be monitored in a biogas plant

Equipment used for treatment and utilization of the biogas

- H₂S scrubber
- Blowers or compressors
- Biogas engine (CHP unit)
- Biogas upgrade technology (Membrane, ...)

Typically this all are sophisticated and rather expensive devices.

How monitoring of biogas becomes essential

- Performance of H₂S scrubbers:
 - Control operation of H2S scrubber according to cleaning performance or oxygen values
- Control and adjusment of CHP units
 - Adjust engine parameters according to changing CH4 concentration
- Grid injection or other further use
 - Monitor gas quality (composition) and quantitiy

Example: Monitoring of H₂S concentration

- H2S filter shall clean the gas to a suitable concentraction for following equipment
- Performance of the H₂S filter depends on ist principle and handling
- H₂S concentraction at scrubber output must be monitored!
 - Scrubber performance check
 - Protect the gas-using equipment, e.g. CHP engine

Cost - CHP engine repair vs. Gas Analyzer

CHP breakdown	Gas Analyzer
CHP repair: 20.000 – 50.000 EUR	Purchase: 8.000 – 10.000 EUR
Loss of income: 1.000 - 10.000 EUR	Installation: 1.000 EUR
	Maintenance: 1.000 EUR / year
Total: 21.000 – 60.000 EUR	Total: 10.000 – 12.000 EUR
↓ Thread:	Additional benefit: use measured parameter to operate the plant more efficient and

VEREIN DEUTSCHER INGENIEURE Emissionsminderung
Biologische Abfallbehandlungsanlagen –
Kompostierung und Vergärung
Anlagenkapazität mehr als ca. 6.000 Mg/a
Emission control
Biological waste treatment facilities
Composting and anaerobic digestion
Plant capacities more than approx. 6.000 Mg/a

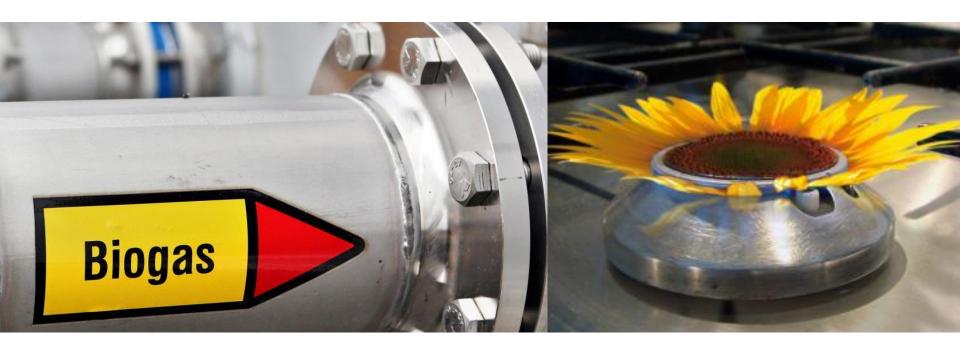
VDI 3475

Blatt 1 / Part 1

Ausg. deutsch/englisch Issue German/English

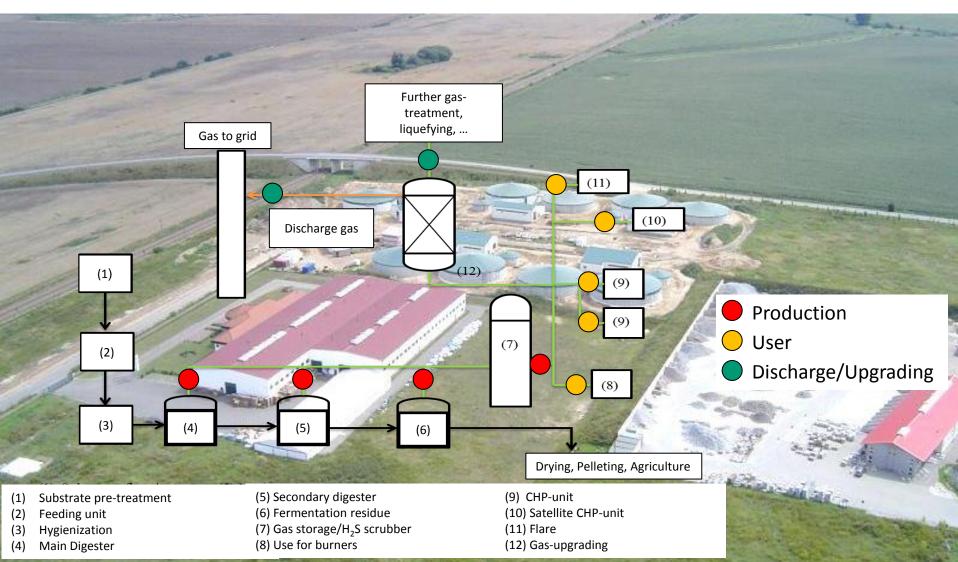
".. It is highly advisable to analyze the composition of the biogas in the raw state and before the CHP regarding CH_4 , H_2S and O_2 . Thus, changes in the biogas and the cleaning measures function can be monitored. The analysis must be made regularly at least daily. In case of unevenly distributed feeding and expected fluctuations in the biogas composition, the analysis frequency needs to be adapted.

It is advisable to use gas analyzer with set-limits and alarm and opportunity to integrate them into an existing plant control. Methane sensors must be pressure and temperature compensated; hydrogen sulphide sensors also need to be sufficiently resistant with peak concentrations. Regular calibration according to the manufacturer's instructions are generally to follow... "


Why is process monitoring necessary?

- **Supervision** of individual components, e.g. H₂S scrubber
- Protection of sensitive equipment, e.g. CHP-engine
- Preventive alarm settings to react timely on process fluctuations
- Improve feeding cycles and reduce raw material usage
- **Comply** to legal requirements, e.g. evidence of biogas production volumes and gas-quality
- > Increase of safety, efficiency and profitability

Biogas particularities

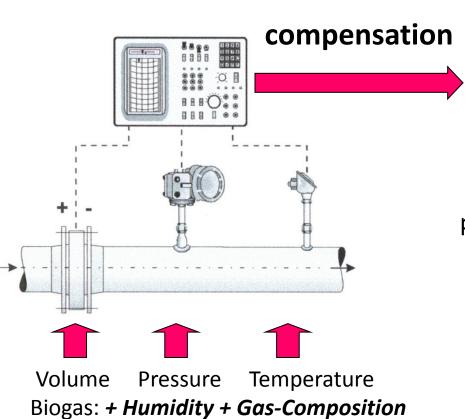


BIOGAS – a mixture of different gases

	Gas component	Description	Challenge
B B	CH4 (Methane)	The product which we want	Maximize yield
S	H2S (Hydrogen Sulfite)	The problem	Toxic and corrosive
••	O2 (Oxygen)	Carefully to be watched	Avoid explosion
	CO2 (Carbon Dioxide)	Complementary to CH4	

Typical measurement locations

Gas qualities on the different measuring points


Gas Production	Gas User	Gas Upgrade
dirty, wet, corrosive	Less dirty, partly dry,corrosive	Clean, dry
low pressure (-3+3 mbar)	higher pressure (4080 mbar)	high pressure (bar ranges)
low velocities (0,53m/s)	higher velocity (815 m/s)	high velocity
CH4 48-54 Vol%	CH4 48-54 Vol%	CH ₄ 95-98 Vol%
H ₂ S up to 10000 ppm	H2S < 100 ppm	H2S < 2 ppm
O ₂ 0-1 Vol%	O ₂ 0-1 Vol%	O ₂ 0-1 Vol%
CO ₂ 38-42 Vol%	CO2 38-42 Vol%	CO ₂ 2-5 Vol%

Definition Standard-Cubic-Meter

Measuring volumetric flow

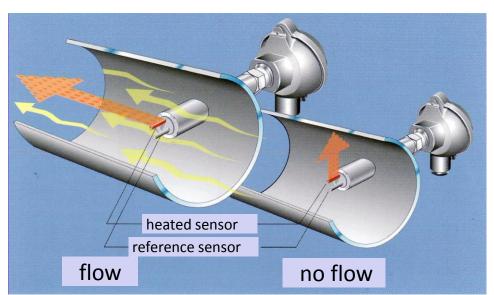
Standard Volume V₀

Gas Mass m

p & T compensation necessary for:

- Orifice plates DP
- Vortex flow meter
- Turbine meters/ mechanical counters
- Ultrasonic flow meter
- Pitot tubes
- ...

Technologies for Flow & Analyze of Biogas



COMBIMASS® - thermal gas flow measurement

COMBIMASS® Thermal dispersion mass flow measurement

Temperature:

Sensors measure resistance (by use of Pt100 sensors) – second sensor provides as reference

Principle:

Dispersed heat provides as reference for the amount of gas-molecules passing by \rightarrow direct mass-flow measurement

Advantages:

Unaffected by pressure and temperature changes, very low pressure drop, precise even at low flow rates, reference sensor can be used to provide the gas temperature.

Challenge:

A CH₄-molecule disperse a different amount of heat than a CO₂-molecule etc. Also water damp molecules disperse heat.

BINDER Gas analysis

Analyzer station COMBIMASS® GA-s Hybrid

The New flexible analyzer system:

- flexibility in cabinet sizes & material
- flexibility in size of graphic display
- flexibility in gas cells
- flexible for indoors/outdoors
- flexible in sampling frequency and sequence (continuously/ frequently)
- Easy assembly and maintenance

Modular System for specific customer's requirement

Conclusions

Conclusion

- Importance of Plant Monitoring
- Suitable solution for particular requirements
- Maintenance made easy

→ stable, safe and profitable operations

Contact Persons

Jan Talkenberger
Manager International Sales
jan.talkenberger@bindergroup.info
+49 1733069903
Binder GmbH
Buchbrunnenweg 18
89081 Ulm, Germany

Alex Hwong
Sales Director South East Asia Pacific
alex.hwong@bindergroup.info
+60 192234005
B-3A-25 Blk Bougainvillea, 10 Boulevard,
Lebuhraya Sprint
47400 Petaling Jaya, Selangor, Malaysia

