

VIII SIMPÓSIO GERMANO-CABO-VERDIANO DE ENERGIA DIVERSIFICAÇÃO DE ARMAZENAMENTO E GESTÃO DE REDES INTELIGENTES EM CABO VERDE

Praia, 28th November 2022

Rito Évora

DNICE

global trends in the power sector:

Decentralisation	Decarbonisation	Digitalisation
 Moving from conventional centralized top-down power systems towards a decentralized model. High presence of Distributed Energy Resources. Importance presence of distributed microgrids for rural electrification and reliability improvement. 	 Reduce the CO2 emissions from power generation. Increase the integration of renewable energy. Increase the energy efficiency at consumption level. Electrification of the energy consumption. 	 Installation of sensors and actuators for power system monitoring and control. Management of collected data and use for business application (e.g, optimal operation and planning, security improvement, quality of service, etc.). Use of new IT and communications technologies to develop new services in the power system.

Table 9. Main challegnes and best practices in European islands according to Eurlectric report

Main challenges in islands

- Energy dependence (generation mainly from fossil fuels)
- Lack of economies of scale in power production
- Operational energy constraints and small markets due to isolated nature
- Additional challenges to decarbonise
- Power generation plants have limited size
- Need of integrate renewable energies without jeopardize the security of the power system

Best Smart Grid practices

- Energy storage: several pilots in different islands
- Distributed renewable generation + DERs
 Management System to maximize RES
 integration
- Smart net metering for promotion of small scale PV technology
- Electrical Mobility
- Interconnections between islands in specific cases → need of business cases
- Islands environments are interesting for testing Smart Grid pilots (due to reduced size and particular condition)

The National Program for Energy Sustainability (NPES)

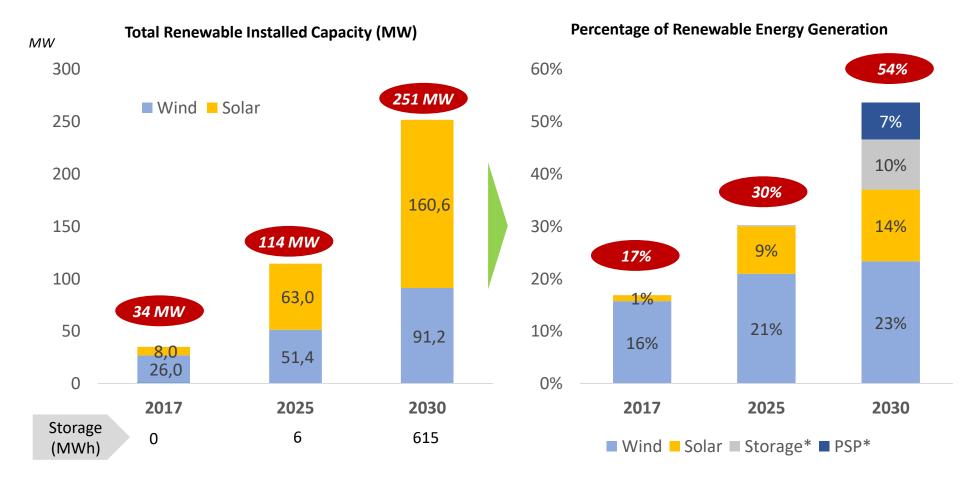
Main Axes

Institutional Strengthening and Improvement in Business Environment

New Axes

Promotion of Entrepreneurship and R&D

Inclusion and Gender Equity


Investments in Strategic Infrastructure

Energy Market Reform

Renewable Energy Development

Promotion of Energy Efficiency

^{*} Storage and PSP % represents part of renewable generation stored and discharged through inverters or turbine

Storage Electra **IPPs Services** Genco Power Purchase Agreements (PPAs) Implementation Agreement Escrow [+ Single **GOCV** Buyer/TSO Power Purchase Agreement **Gurantee**] Transmission Use of Service Agreement **Distribution Company** Concession Agreement for Public Domain Assets **Customer Contracts** Regulated Tariffs/fees **Customers**

Figure ES-3: Proposed New Industry Structure

Power System Objetives

- 1. Increase electricity share from renewables
 - •To reduce energy dependency on fossil fuels
- 2. Guarantee stability and security
 - •Power system enhancement in presence of higher renewable sources
- 3. Reduce losses
 - Losses have relevant values in the country
- 4. Generation & operation cost reduction
 - Leading to lower cost of electricity for customers
- 5. Facilitate the integration of Distributed Energy Resources
 - Customer empowerment and microgrids
- 6. Increase the efficiency of the electricity consumption
 - Demand increase management and consumption pattern collection
- 7. Improve the quality of supply of customers
 - To reduce outages
- 8. ICT and Cyber Security Enhancing
 - •Guarantee the adequacy of communication infrastructure and its security
- 9. E-Mobility and transport electrification
 - •Develop public infrastructure for charging management of electrical vehicles

Table 10. Value proposition of Smart Grids for power sector in Cabo Verde

Objective in Cabo Verde	Smart Grid benefits
1. Increase electricity from renewables	 Advanced monitoring and control solutions to increase the integration of renewable generation in the system,
Trom renewables	 Introduce flexibility for enhanced system operation under presence of variable non-controllable renewable generation, such as storage.
2. Guarantee stability and security	 Real-time monitoring and detection of risking situation for the system at different voltage levels, and implementation of automatic operations to correct them,
	 Remote operation of controllable solutions to guarantee network security.
	 Benefit demand management programs for supply and demand balancing and peak shaving.
3. Reduce losses	 Advanced Metering infrastructure for accurate measurement Monitoring and data analytics for identification of commercial losses Integrated AMI-billing system for commercial loss reduction.
4. Generation & operation cost	 Optimal dispatch of the generation units, enhanced by the presence of remote control, advanced forecast algorithms, flexible resources),
reduction	 Reduce the amount of reserves for secure operation of the system and, therefore, their associated cost. Grid upgrade investment deferral by energy flow and DER management
5. Facilitate the	Introduce monitoring and control management systems for secure
integration of Distributed Energy Resources	 massive integration of DERs into the system, Aggregation platforms for the dispatch of DERs, taking advantage of the added value of the aggregated services.

Objective in Cabo Verde	Smart Grid benefits
6. Increase the efficiency of the electricity consumption	 Facilitate the integration level of auto-consumption in customers, Customer consumption pattern correction, Provide information systems for an efficient consumption management, for example, smart lighting, smart building, customer web portal, etc
7. Improve the quality of supply of customers	 Reduction of interruption times required to identify, isolate and restore the supply Advanced protection systems to identify in probable components failures. Enhanced voltage and frequency control mechanisms.
8. ICT and Cyber Security enhancing	 Communication infrastructure and link management for distributed intelligence. Facilitation of new business functionalities Guarantee the cyber security of the ICT links and systems for Smart Grids
9. Mobility electrification	 Enable efficient management of electromobility charging Facilitate the tariffs and information systems for customer participation

five priority projects to be implemented by 2025

Objective	Short term (2021)	Medium term (2025)	Long term (2030)
1. Renewable share increase	Advanced RES forecasting proced ESS management module implementation in SCADA/EMS	lure revision & SCADA implementing	
2. System stability	TOU tariff revision and implement Market revision for RES and ESS participation in Anciliary services	voltage VAR optimisation	
3. Loss reduction	Unified Billing system and customer account migration	Data Analytic Fraud Pevention	Advanced Outage Management System
4. Gen. & Op. cost reduction	DR program implementation	DSM program implementation	Advance Asset Management System Implementation
5. On-grid DER Management	Auto-generation Connection Procedure (Tech. Assessment) DER module in SCADA/DMS	Demand and Generation Aggregation Platform	
6. Energy efficiency	Demand Management R Customer campaing &Web Portal	program (DR and DSM)	Smart Building Control System
7. Quality of supply	Unified quality index procedure, measure and register (using SCADA and AMI data)		
8. ICT and CS Enhancing	IT dept. re-structuring	Security policy development and monitoring Communication requirement assessment and assignation	
9. E-Mobility		Public EV charging infra G2V module implementation	

Ongoing Projects

- Development of 37 MW of RE as IPPs is underway
 - 5 MW solar PV IPP in Boa Vista Island (Gamma Solutions);
 - 13 MW wind farm IPP in Santiago (cabéolica exp. project);
 - 5 MW solar on São Vicente Island (APP/ Impulso);
 - 5 MW solar on Sal Island (APP/ Impulso);
 - 10 MW solar IPP in Santiago Island (on going tender);
- BESS 1MW/1MWh in Sal (to be concluded in Oct).
- New BESS 5MW/5MWh in Sal (cabéolica exp. project)
- New BESS 5MW/5MWh in Santiago (cabéolica exp. project)

New Projects 2022-2023

- Four small-scale solar PV projects:
 - 1.3 MW for Fogo Island;
 - 1.2 MW for Santo Antão Island;
 - 0.4 MW for Maio Island;
 - and 0.4 MW for São Nicolau
 - Battery storage investments for this systems are also been considered.
- Repowering existing 5MW solar in Santiago and 2,5 MW in Sal;
- BESS 5MW/5 MWh for Boavista;
- BESS 4MW/4 MWh for S. Vicente;
- PSP 20MW/160MWh for Santiago

Project ID	SPV-4MVA/4MWh-SV1	
Project size	4 MVA / 4 <u>MWh</u>	
Site	Lazaretto Power Station	
Site location	South of Power Station, nearby public road, 300 meter from North-East corner along the road	
Site coordinates	Lat: 16.869869° Long: -25.016397°	
Land <u>owned by</u>	Electra	
Current occupation of site	Idle	
Electrical interconnection	Spare feeder at SS available	

CAPEX [M€]

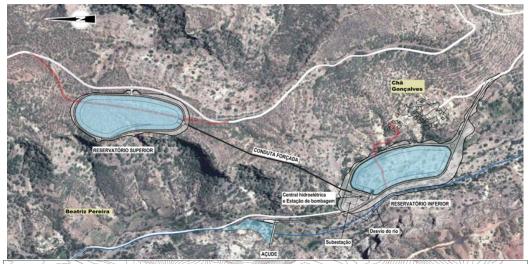
2,55

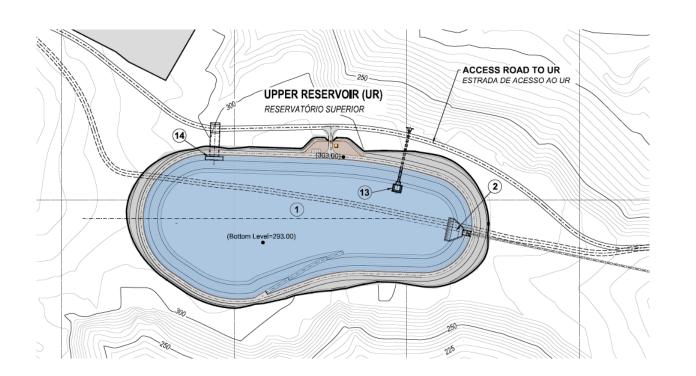
Project ID	BSS-5MVA/5MWh-BV1
Project size	5 MVA/ 5 MWh
Site	Parcela Power Station
Site <u>location</u>	Adjacent to Parcela Substation 2.
Site coordinates	Lat: 16.135215° Long: -22.896979°
Land owned by	Municipality
Current occupation of site	Idle
Electrical interconnection	Space in substation available. No spare feeder

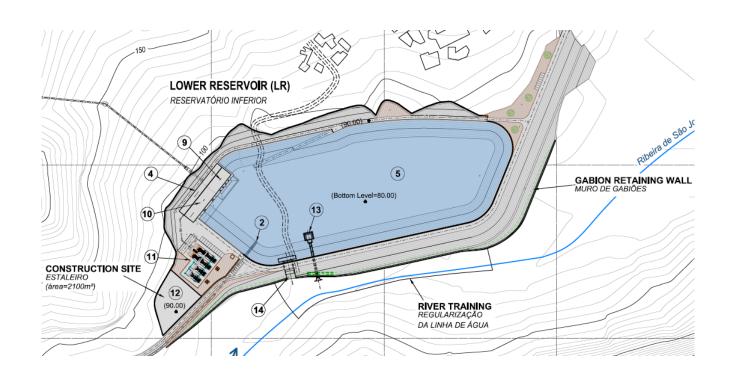
CAPEX

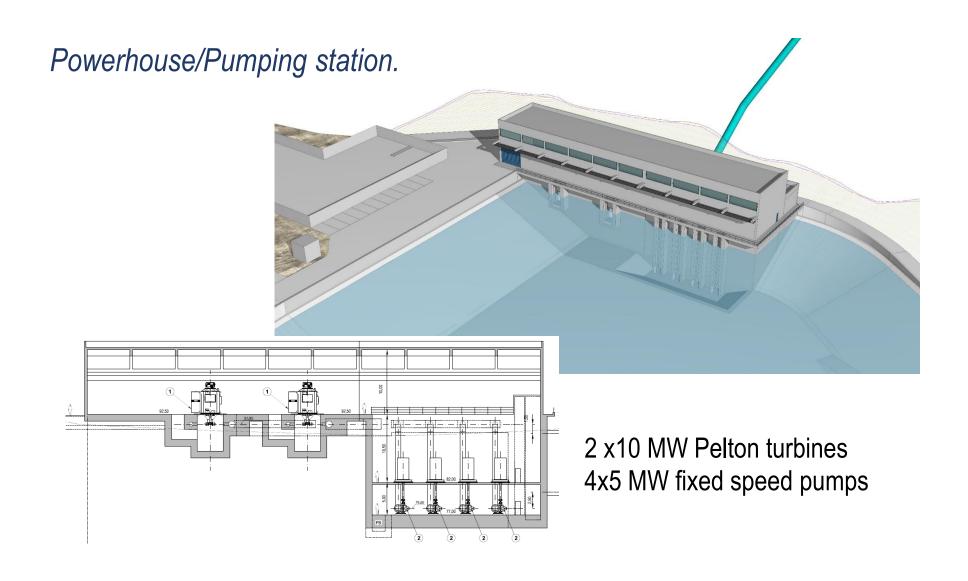
2,66

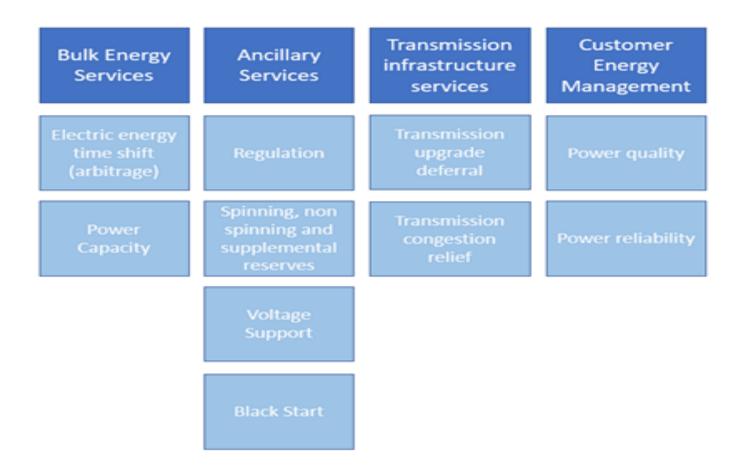
The Santiago PSP will be located in the valley of Ribeira de São João, about 20 km west of Praia city.

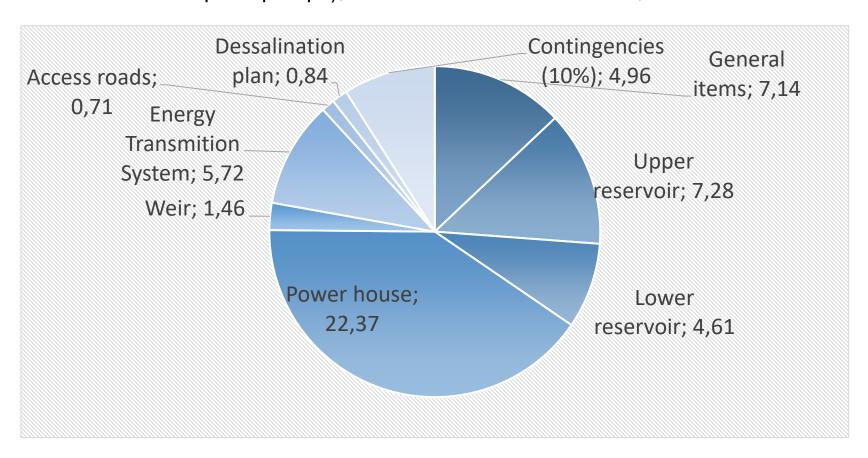

Feasibility Study for the Construction of a Pumped-Storage Station in Santiago Island – Cabo Verde




- INCEPTION REPORT
- D1&2 DETAILED GEOLOGICAL AND GEOTECHNICAL ASSESSMENT REPORT
- D3 HYDROLOGICAL (WATER AVAILABILITY) ASSESSMENT
- D4 ASSESSMENT OF THE ENVIRONMENTAL AND SOCIAL CHARACTERISTICS AND RISKS
- D5 SITE ASSESSMENT REPORT
- D6 STUDY OF ALTERNATIVE LAYOUTS
- D7A GRID CONNECTION AND DYNAMIC STABILITY STUDY
- D7B PSP OPERATION AND REMUNERATION MODEL
- D7C ENGINEERING AND ECONOMIC DESIGN
- D8 PRELIMINARY ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT
- D9 FINANCIAL ANALYSIS AND IMPLEMENTATION STRATEGY


- installed capacity of <u>20 MW</u>
- <u>150.8 MWh</u> energy storage capacity,
- two large off stream reservoirs, of 320 000 m³ and 360 000 m³, connected by a penstock with length of 0.8 km, with a surface Powerhouse / Pumping station.
- small diversion dam in ribeira de São João and a desalinated water supply system, both for reservoir filling and compensation of water losses.





PSP ROLE AND PERFORMANCES IN THE 2030 SYSTEM

The preferred alternative from a technical point of view is Alternative 3 (2 Pelton turbines + 4 fixed speed pumps), with a total cost of 54.65 M€,

Expected Time Schedule

- 2022/23 Environmental and Social Impact Assessment (EISA); Definition of financial and contractual conditions.
- 2023/24 PPP / BOT tender; Preliminary works.
- 2024/26 Construction.
- 2026/27 Start of operation.

Thank you!

rito.evora@mice.gov.cv