

# **RWTH Aachen University**

Division of Mineral Resources and Raw Materials Engineering – Facts, Figures and Study Opportunities



#### **RWTH Aachen - The Big Picture in Figures**





3/24



- The state grant is 441.7 million € for the university without medicine and 120.6 million € for the faculty of medicine.
- The project funds are 403.7 million € for research and 83.0 million € for teaching.
- RWTH is the university in Germany with the most third party funds.
- Since 2010 the amount of third party funds for research increased by about 145 million €.



#### **Students in Winter Semester 2020/21 - Overview**



- Highest number of students in the history of RWTH: There has been an increase of nearly 15,000 students compared to ten years ago.
- Every tenth student at a (not-distance-learning) university in NRW studies at RWTH.
- Statistically spoken one in five inhabitants of Aachen is a student at RWTH.
- 34,470 of RWTH students are between 20 and 29 years old. This is equivalent to 57 % of all Aachen inhabitants in this age group.



#### **Students in Winter Semester 2020/21 - Development of the Number of Students**





#### **Students in Winter Semester 2020/21 - by Discipline**





# **Students in Winter Semester 2020/21 - International Students**



- Students from 138 countries
- Students from 82 % off all large countries<sup>1</sup>
- Most common countries of origin: China, India and Turkey
- Most common countries of origin related to the number of inhabitants: Luxembourg, Andorra, Cyprus, Bulgaria
- High amount of international students: 26 % in comparison to the average number of students at German universities (14 %)



#### **Performance Indicators and Reputation**



- Many rankings certify RWTH best scores.
- In its 2020 edition, the QS Ranking ranks RWTH Aachen University in 18<sup>th</sup> place among the best universities in mechanical engineering worldwide.
- In WiWo Ranking 2020 RWTH is placed first considering computer science and industrial engineering. In mecanical engineering, electrical engineering and natural sciences RWTH achieves the 2<sup>nd</sup> place.
- Allensbacher Inst. f. Demoskopie: 70% of German managers have got a positive image of RWTH Aachen – no other university was better evaluated.





#### **Performance Indicator Publications**



- More than 102,000 publications during the last eleven years
- About 900,000 citations since 2010 on RWTH publications
- In average 92,000 citations of publications of staff members of RWTH each year\*

Source: RWTH Publications & Web of Science

9/24

\*Basis: citations of the years 2005-2018



# **Faculty of Georesources and Materials Engineering | Faculty 5**

- Division of Mineral Resources and Raw Materials Engineering
- Division of Materials Science and Engineering
- Division of Earth Science and Geography





#### **Division of Mineral Resources and Raw Materials Engineering**









Raw Materials Production and Supply



Subsurface Space Utilisation for Energy and Storage



Carbon Economy Substitutes and Transformation



Ecological Functions of Hydro- and Biosphere

- Developing advanced mining, processing and metallurgical technologies for mineral resources extraction and supply from surface, underground, deep sea and space.
- Utilizing underground space for energy system transformation and storage of energy and unavoidable non-recyclable residues.
- Reducing CO<sub>2</sub> in metal production and design of transformation processes.
- Managing human interaction with ecological functions of hydro- and biosphere



Dimensions of sustainability and License to operate

 Evolving technologies with particular regards to societal and environmental impacts.





#### **Research | Advanced Circular Economy**



Sustainable Cities



Circular Industrial Processes

Materials Design for Recycling



Waste Management



Recycling 4.0: Interconnected Process Design

- Consideration of social accepted concepts for a sustainable city from the point of view of citizens and other urban actors (e.g. innovative waste sorting, logistics, urban planning and sustainable materials).
- Recovery of raw materials from waste without loss of quality; avoidance of noxious contaminants; application of robust and flexible processes for varying waste streams in small quantities and low quality.
- Increased tolerance of established alloys in terms of contamination with impurities; development of innovative alloys and products with a higher recycling efficiency.
- Minimization of residual waste; optimized mechanical and physical preparation; effective decision for re-use, recycling and material recovery; definition of a final sink.
- Use of Artificial Intelligence for increased raw material and energy efficiency through automated process control; application in the urban planning through smart logistics.







# **Study Sustainability** Energy and raw materials for the future



# Study in the field of raw materials, recycling and energy

# Our study programs

#### • Bachelor:

- Sustainable Resources and Energy Supply
  - Mining
  - Recycling
  - Energy

#### • Master:

- Mineral Resources Engineering
  - Sustainable raw material extraction
  - Surveying
  - Processing of mineral raw materials
  - Recycling
- Sustainable Energy Supply





#### Study in the field of raw materials, recycling and energy



16/24



#### Sustainable Resources and Energy Supply B.Sc.

# **Bachelor's thesis**

#### Internship (40 Days)

#### Electives

Mining: Geology Mineralogy Raw Material Economy Energy Resources Mine Surveying Raw Material Extraction Recycling: Geology Mineralogy Raw Materials & Recycling Energy Resources Emission Reduction Thermal Waste Treatment

Energy Resources Energy Engineering Thermodynamics Fluid Mechanics Experimental Design Process Engineering

#### **Fundamental courses**

Mathematics, Mechanics, Chemistry, Electrical Engineering, Heat Engineering, Business Administration, Law, Simulation Technology





# Sustainable Resources and Energy Supply B.Sc.

#### What makes the program so special?

- Choice of one of three different majors in the 3rd semester
- Elective area enables students to take subjects of other specializations / Change of specialization possible
- Fewer students than in other engineering programs
- Worldwide partnerships for semesters abroad and career prospects
- No NC (Numerus Clausus) necessary
- No previous internship necessary
- Non-technical subjects (e.g., field trips, scientific writing and presenting)







#### Mineral Resources Engineering M.Sc.

| Master's thesis<br>internship (50 Days)                                  |                                                             |                                                |                                                 |  |  |
|--------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|--|--|
| Mining                                                                   |                                                             |                                                | Recycling                                       |  |  |
| Sustainable<br>Extraction:<br>Drilling and Blasting                      | Mine Surveying:<br>Mine Design &                            | <b>Processing:</b><br>Special Processing       | thermal waste treatment business administration |  |  |
| Mine Design &<br>Simulation<br>Mine Ventilation<br>Machinery Techniques  | Simulation<br>Surveying<br>Geoinformation<br>Photogrammetry | Chemistry<br>Metallurgy<br>Software Techniques | waste management<br>environmental analysis      |  |  |
| Mandatory module:<br>Mining Economics, Responsible Mining, Mine Planning |                                                             |                                                | Mandatory module:<br>Chemie, process technology |  |  |







| Master's thesis<br>internship (50 days)                                                                                 |                                                                                                 |                                                                                                                    |                                                                                         |  |  |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|
| <b>Mechanical</b><br><b>Engineering:</b><br>Power plant technology<br>Solar energy<br>Energy technologies<br>Hydropower | <b>Raw Materials:</b><br>Fuel processing<br>Geoenergy<br>Secondary raw<br>materials<br>Deposits | <b>Electrical</b><br><b>Engineering:</b><br>Electrical grids<br>Wind energy<br>Photovoltaics<br>Electricity supply | <b>Non-technical<br/>Fields:</b><br>Energy industry<br>Economy<br>Simulation technology |  |  |
| <b>Mandatory module:</b><br>Planning seminar, Technology assessment, Bioenergy, Energy conversion                       |                                                                                                 |                                                                                                                    |                                                                                         |  |  |





#### **Career perspectives**

# Future topics in the fields of mining, recycling and energy

- Structural change (e.g. hard coal, lignite and nuclear power)
- Rare metals
- Environmental protection
- Resource conservation
- Waste prevention
- Recycling of composite materials
- Security of supply (population growth)
- Energy storage









# Homepage and Social Media



www.rohstoffe.rwth-aachen.de



Division of Mineral Resources and Raw Materials Engineering

fre\_rwth











#### Where can I get more information?





# Thank you for your attention!





Thinking the Future Zukunft denken



Carolina Sabarny, M.Sc. sabarny@rohstoffe.rwth-aachen.de



Tobias Hartmann, M.Sc. thartmann@amt.rwth-aachen.de