Introduction to Chulalongkorn University's Building Energy Management Sys. **Energy Research Institute (ERI)** Showa Shell Sekiyu K.K. **University of Tokyo Department of Electrical Engineering Chulalongkorn University**

7 March 2016

Energy Policy and Planning Office MINISTRY OF ENERGY

ELECTRICAL ENGINEERING CHULALONGKORN UNIVERSITY

THE UNIVERSITY OF TOKYO

Outlines

Sensors & Meters

User Interfaces

- Public display, Web App & Android App
- Demand response test on A/C

Project Background

THE UNIVERSITY OF TOKYO

Objectives of the Project

- To demonstrate a future building energy management system (BEMS) at the department of Electrical Engineering, Chulalongkorn University (EECU)
 - To raise awareness of individuals' consumptions
 - An informative, not an automation system
- To study/compare people's behavior before and after BEMS installation
 - Study demand response to control signals

Funding/Budget

- Installation was supported financially by Energy Conservation Promotion Fund (ENCON Fund) under the Energy Policy and Planning Office (EPPO).
 - Supported and sponsored by several partners
 - 1-year project: Sep 2013 Sep 2014
- EE Dept. takes care of
 - M&O
 - System expansion
 - Data analysis costs.

EECU-BEMS Members

Project Advisor (Director of Energy Research Institute)	Sensor and IEEE1888	
Project Advisor (Head of Department of Electrical Engineering)	Smart Meter and Equipment Control System	R
Project Manager	Renewable Energy Source	R
System Integrator and Demand Response	Renewable Energy Source	
Sensor and IEEE 1888	Power Electronics	

Supporters/Sponsors

- Sensor / IEEE1888 The University of Tokyo
- Smart Meters previous projects were sponsored by MEA, PEA & EPPO
- Application: Server/Storage/Web Application/Mobile APP
 - NDR Solution (Thailand) Home-brew IEEE1888
 - SEIKO Solution (Thailand) Commercial IEEE1888
- PV Modules Showa Shell Sekiyu K.K. donated 5kW CIS-type panels
- EV Charging Station supported partly by Faculty of Engineering, CU

Project Design

THE UNIVERSITY OF TOKYO

Components

Communication & IT Architecture

Characteristics of EECU-BEMS

- Application Protocol IEEE1888
- Sensors-to-Gateway ZigBee or 6loWPAN
- Gateway-to-Server Wired or Wi-Fi LAN
- Renewable Energy Sources PV, Very Small Scale Wind, and Energy Storage System (Battery)
- EV Charging station (EV cars of another project)
 - Battery charge/discharge data will also be stored in the server.
- App Android only, iOS is under development

Environment Sensors & Energy Meters

THE UNIVERSITY OF TOKYO

Sensor

Sensor

Sensor

Sensor installed at 2nd floor of EE Bldg.

In-house Submeters

- With experiences, an Energy Measurement Unit (EMU) was designed.
- In a small box, there are up to 32 submeters.
- Need small additional space.
- * A lot cheaper <10x
- IEEE1888-ready
- * EMU V1 & V2 have been installed more than 1Y.
- EMU V3 is under development.

EMU V1 & V2

Renewable Sources Integration

Renewable Energy Sources

PV and Micro & Wind Turbine with batteries

User Interface

THE UNIVERSITY OF TOKYO

Web Application developed by EECU-BEMS Team

Web Application developed by EECU-BEMS Team

Web Application developed by EECU-BEMS Team

Mobile Application

Public Display

Demand Response Trial

Notification System – Link with Facebook

5-Mode Split-type AC Control

AC Control developed by EECU-BEMS Team

