

PTX TECHNOLOGIES AND THE INDUSTRIAL-SCALE HYKERO PLANT

INSPIRING TECHNOLOGY

Sept. 11, 2023, AHK Montevideo

Jan Schwartze

EDL ANLAGENBAU GESELLSCHAFT MBH

Leading technology-driven engineering company, being active in the process industries and looking back on a history of more than 100 years.

Since 2003 EDL has been a member of the Pörner Group after many years as part of RWE / DEA and Texaco under the company name Edeleanu GmbH.

Portfolio – Technologies, Plants, Services

- Green- and brownfield projects from feasibility up to turn-key delivery.
- Process and auxiliary plants for refining, petrochemical & chemical, lubricants & wax and renewable energy industry.
- Licensing of advanced technologies for residue processing, oil and wax production and waste plastics depolymerization.
- Power-to-X (PtX) and Biomass-to-X (BtX) technologies for sustainable synthetic fuels and chemicals with climate-neutral carbon footprint.
- Technical and commercial consulting services.

SDA PLUS

EDL. TECHNOLOGY

DEWAXING EDL-TECHNOLOGY

DEOILING EDL*TECHNOLOGY

LEPD EDL-TECHNOLOGY

AROMEX EDL. TECHNOLOGY

POWER2X EDL. TECHNOLOGY

COMPARISON OF DIFFERENT SYNTHETIC FUELS

Kerosene (and liquid HC) has best volume- and weight-based system energy density.

Kerosene	LNG ^{a)}	CNG a)	NH ₃ FC ^{a)}	H ₂ FC ^{a)}	Electric				
35.0 MJ/l ^{b)} 40% ^{c)}	22.2 MJ/I ^{b)} 40% ^{c)}	9.0 MJ/I ^{b)} 40% ^{c)}	12.7 MJ/I ^{b)} 50% ^{c)}	4.5 MJ/I ^{b)} 50% ^{c)}	1.8 MJ/I ^{b)} 90% ^{c)}				
Volume in '000 liter (of fuel and tank system)									
33	52	128	91	256	862				
Weight in t (of fuel and tank system)									
42	65	144	79	192	985				

^a LNG @ -160°C, CNG @ 250bar, NH₃ @ -33°C, H₂ @ 690bar

Sources: Airbus, EDL

^b energy content (LHV, capacity) ^c assumed tank-to-wing efficiency in %

EU SAF QUOTA

Jet A1 (kerosene, SAF) is the only option to fuel the majority of aircrafts for several decades.

ReFuelEU Aviation trilogue April 24th:

Year	SAF	quota	PtL SAF sub-quota				
2025	2%	(1 MM t)					
2030	6%	(3 MM t)	1.2%	(0.5 MM t)			
2035	20%	(10 MM t)	5.0%	(2.5 MM t)			
2040	34%	(17 MM t)	stepv	wise			
2045	42%	(21 MM t)	up to)			
2050	70%	(35 MM t)	35%	(17 MM t)			

PLANT EFFICIENCY – PTL PATHWAYS

Sources	Pathways			Ely Eff.			Prod. H ₂ O	Overall Eff.	Lowest TRL		
	Hydrogen	Syngas	Intermediates	Fuels	kWh/Nm ³		_	kg/kg*	kg/kg*	□11. %**	***
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	PEM	RWGS	Fischer- Tropsch	Refining	4.5	21.9	3.1	-	2.5	55.8	< 5
11	PEM	МеОН	MTO -	Oligo- merization	4.5	21.9	3.1	-	2.5	55.8	< 8
Electricity	PEM	Fermen- tation	→ ETO —	Oligo- merization	4.5	21.9	3.1	-	2.5	55.8	< 8
		Co-SOEC	Fischer- Tropsch	Refining	3.4	16.5	3.1	-	1.3	73.9	< 5
Water	PEM	Dry Reforming	Fischer- Tropsch	Refining	4.5	6.8	1.4	0.6	1.3	81.5	9
	SOEC	Dry Reforming	Fischer- Tropsch	Refining	3.5	5.3	1.4	0.6	1.3	90.5	9
Carbon	SOEC		Plasma Catalysis	Oligo- merization	3.5	13.4	3.4	-	-	91.4	< 3

^{*} Per kg synthetic fuel Source: EDL

^{**} Maximum theoretical yields and efficiencies based on main chemical reactions and LHV (excl. losses) *** Lowest TRL in process route

PLANT EFFICIENCY – PTL PATHWAYS

Sources	Pathways			Ely Eff.	Co Power	nsumpti CO ₂	on CH₄	Prod. H ₂ O	Overall Eff.	Lowest TRL	
	Hydrogen	Syngas	Intermediates	Fuels	kWh/Nm ³	kWh/kg*	kg/kg*	kg/kg*	kg/kg*	%**	***
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	PEM	RWGS	Fischer- Tropsch	Refining	4.5	21.9	3.1	-	2.5	55.8	< 5
11	PEM	MeOH	МТО	Oligo- merization	4.5	21.9	3.1	-	2.5	55.8	< 8
Electricity	PEM	Fermen- tation	● ETO	Oligo- merization	4.5	21.9	3.1	-	2.5	55.8	< 8
	Our HyKero	process	route								
Water	PEM	Dry Reforming	Fischer- Tropsch	Refining	4.5	6.8	1.4	0.6	1.3	81.5	9
	SOEC	Dry Reforming	Fischer- Tropsch	Refining	3.5	5.3	1.4	0.6	1.3	90.5	9
Carbon	SOEC		Plasma Catalysis	Oligo- merization	3.5	13.4	3.4	-	-	91.4	< 3

^{*} Per kg synthetic fuel ** Maximum theoretical yields and efficiencies based on main chemical reactions and LHV (excl. losses) *** Lowest TRL in process route Source: EDL

HYKERO PROJECT OVERVIEW

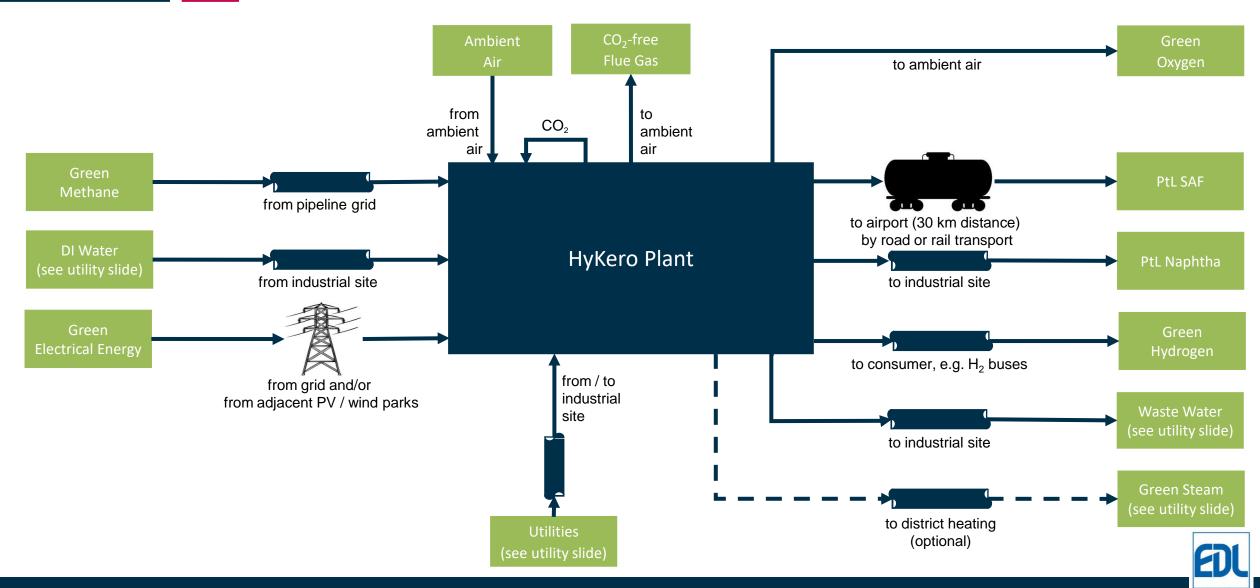
HYKERO – INDUSTRIAL-SCALE PLANT FOR PTL SAF

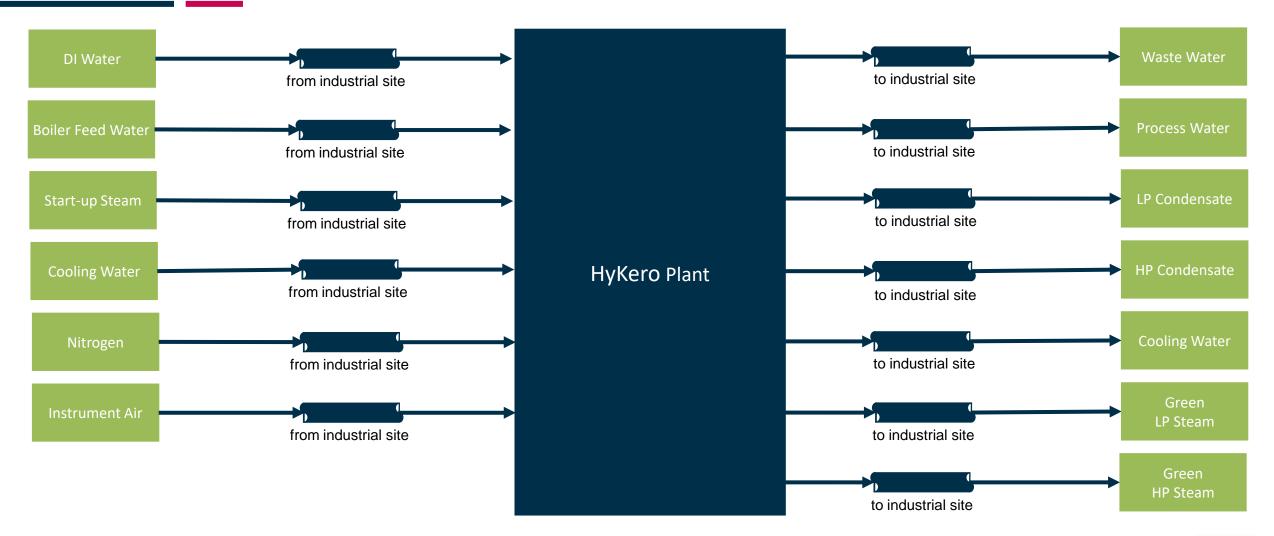
Fully integrated plant design developed by EDL based on TRL 9 technologies, CO₂ emission free.

Located at industrial park Böhlen-Lippendorf (in the south of Leipzig).

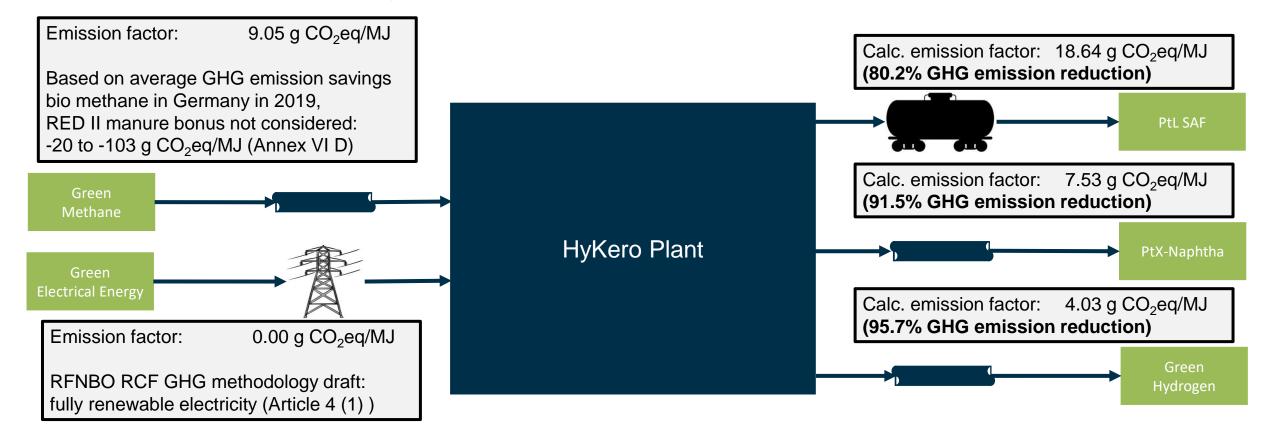
Production of green heat, e.g. for supply to existing district heating.

Linked to existing hydrogen pipeline and optional underground storage.


Optional connection to future adjacent 1.5 GW PV / wind parks.


^{*} GHG saving without bonus acc. to EU RED II Annex 9 A.

HYKERO PLANT – FEED AND PRODUCT STREAMS


HYKERO PLANT – UTILITY STREAMS

HYKERO PLANT – GHG EMISSION FACTORS

Approved calculator for HyKero plant GHG emission reduction.

THANK YOU

gf@edl.poerner.de
jan.schwartze@edl.poerner.de

EDL Anlagenbau Gesellschaft mbH

Lindenthaler Hauptstr. 145 04158 Leipzig, Germany Telephone: +49 341 4664-400, Telefax: -409

www.edl.poerner.de

