Interacción de redes con vehículos eléctricos

Rafael del Río Director Técnico +34 65432 51 50 rafa@adive.es

Índice

- AEDIVE
- Por qué vehículo electrico
- CIRVE

AEDIVE

ASOCIACIÓN EMPRESARIAL PARA EL DESARROLLO E IMPULSO DEL VEHÍCULO ELÉCTRICO

Somos mas de 100 EMPRESAS:

http://aedive.es/s ocios/

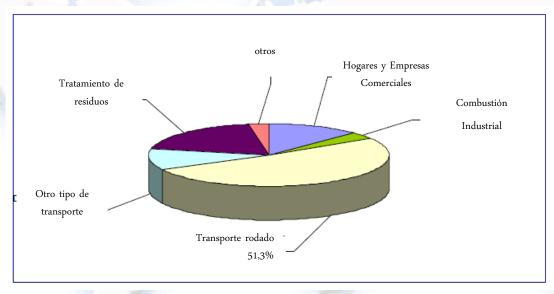
Somos una Asociación **sin ánimo de lucro**

Somos una
Agrupación de
Empresas
Innovadoras (AEI)

Además hay socios institucionales

Razones originales Razones posteriores

- Como medida contra la Contaminación, incluyendo la acústica y el calentamiento global.
- II. Liberar a la Sociedad de la extrema dependencia del Petróleo.
- III. El coste de la electricidad que se usa es una fracción pequeña del del combustible fósil.
- IV. Es la forma más eficiente de mover un vehículo.
- V. Cumplir las exigentes normativas de emisiones de los países avanzados (EURO 6, CAFE y futuras)
- VI. Optimizar el suministro eléctrico.
- VII. Escaparse de la limitación:


Electricidad producida = Electricidad Consumida

VIII. Maximizar el aprovechamiento de las fuentes renovables

I. Contaminación: Emisiones NO2, NOx, NH3,

Las emisiones de este tipo de gases proceden del transporte rodado

Source: Plan de Calidad del Aire del Ayuntamiento de Madrid

I. Contaminación: Emisiones NO2, NOx, NH3,

Las emisiones de este tipo de gases proceden del transporte rodado Las ciudades tienen planes de restricción a corto, medio y largo plazos

Birmingham

2019: £20 as toxin tax for certain diesel cars

Munich

Considering ban on certain diesel cars post 2018

2017: Ban of Diesel < Euro 3 2018: Ban of Diesel taxi built < 2009

London

2017: £10 charge for ICE < Euro 4 2019: £12.5 charge for Diesel < Euro 6 and Gasoline < Euro4

Paris

2016: Ban of Diesel < Euro 2 2017: Ban of Diesel < Euro 3 2025: Possible all Diesel ban

Rome and Milan

Ad-ho ban of cars when high pollution

Stockholm:

2016: Access restriction to Euro 4 diesel cars 2020: Ban on Euro 5 or lesser Diesel cars Ban post 2020 yet to be proposed

Oslo

2017: Ban on diesel when high pollution 2019: Ban on private cars in city center

Brussels

2018: Ban of Diesel < Euro 2 2020: Ban of Diesel < Euro 4 2022: Ban of Diesel < Euro 5 2025: Ban of Diesel < Euro 6

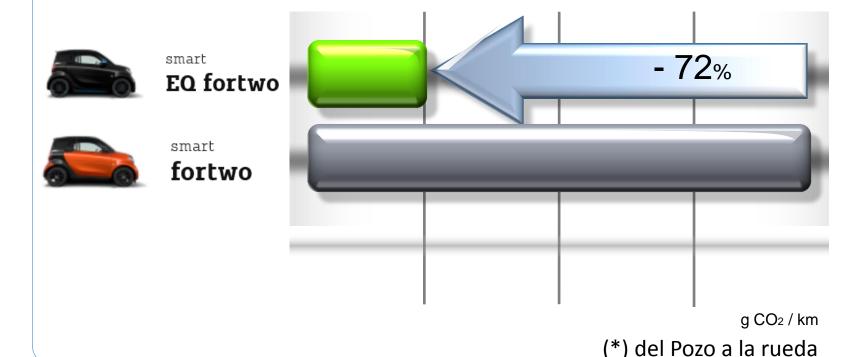
Stuttgart

2018: Ad-hoc Ban of Diesel < Euro 6

Barcelona

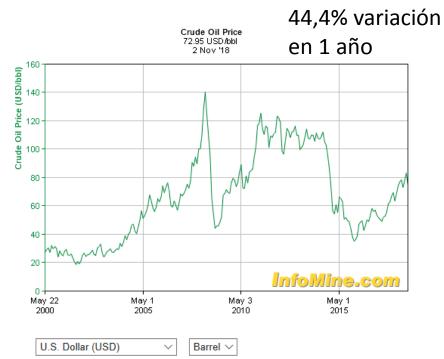
2019: Ban of diesel cars older than 20 years

ICE = Internal Combustion Engine


I. Contaminación acústica

I. Calentamiento global

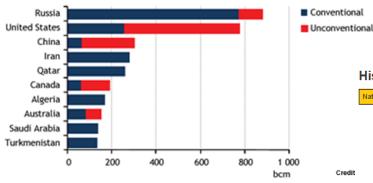
Las emisiones de CO_2 de un vehículo eléctrico son: 1/4 de las de un Gasolina Menos de 1/2 de un híbrido Ahorra más de 1 tonelada de CO_2 cada 10.000 km (*)

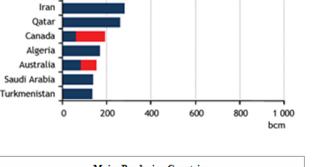

II. Extrema dependencia del Petróleo

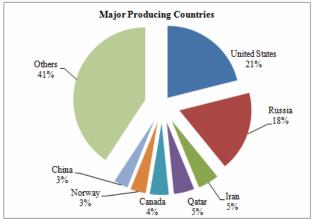
Miembros OPEP y Precio desde 2000

Historical Crude Oil Prices and Price Chart

Crude Oil Price 72.95 USD/bbl (64.14 EUR/bbl) 02 Nov 2018 - 52 Week Low 60.28 USD/bbl 52 Week High 85.83 USD/bbl

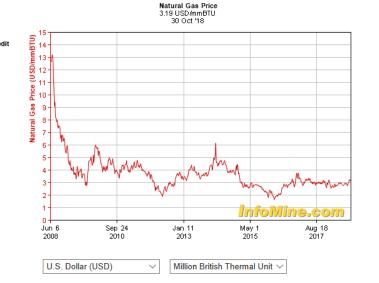





II. Extrema dependencia del Petróleo

Productores de Gas Natural y precio desde 2008

Figure 1.8 ➤ Largest gas producers by type in the GAS scenario, 2035



Source: US Energy Information Agency

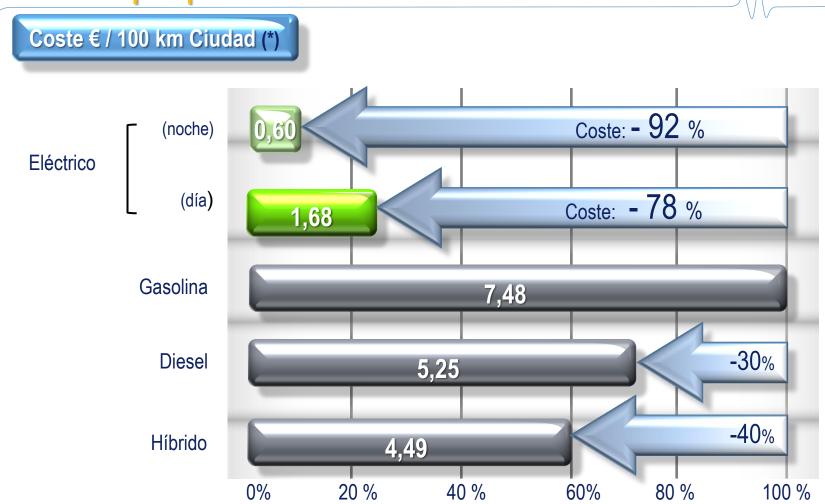
Natural Gas Price 3.19 USD/mmBTU (2.81 EUR/mmBTU) 30 Oct 2018 - 52 Week Low 2.54 USD/mmBTU 52 Week High 3.57 USD/mmBTU

40,1% variación en 1 año

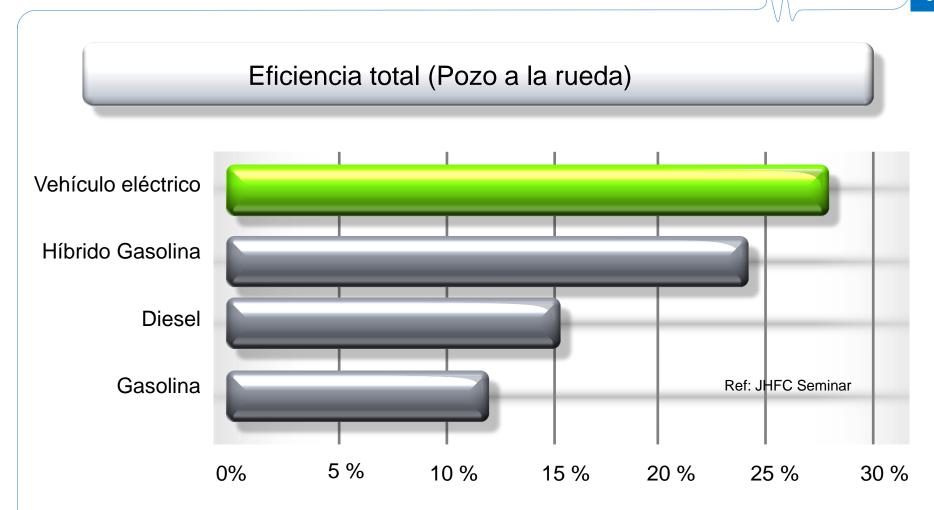
II. Extrema dependencia del Petróleo

0 (%)

-100

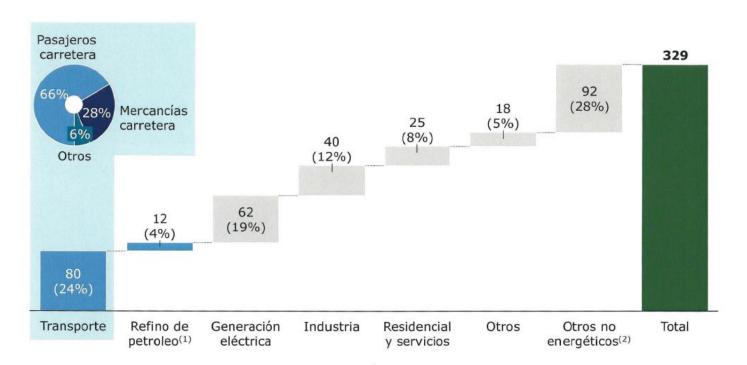

II. Extrema dependencia del Petróleo

Siempre es más fácil encontrar electricidad que gasolina Los impuestos afectan, pero la oferta/demanda siempre favorecerá la electricidad más barata


III. El coste de la electricidad que se usa es una fracción pequeña del del combustible fósil.

(*) gasolina 6,5l @1,15, Diesel 5,2l @1,01, Híbrido 3,9l (@1,15)/100Km Carga 0,146€/KWh día 0,052 €/KWh noche impuestos y peaje incluidos

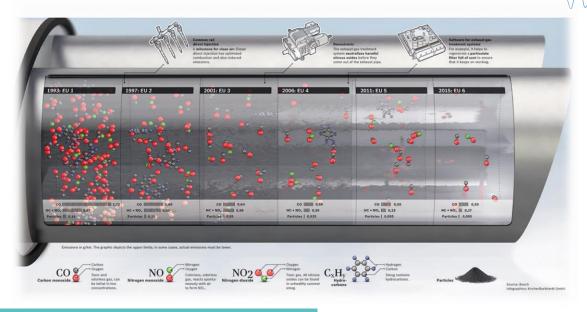
IV. Es la forma más eficiente de mover un vehículo.



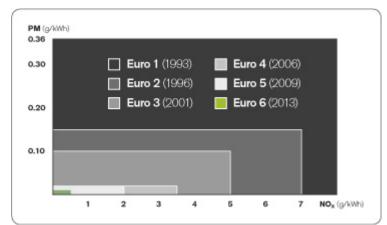
VIII. Cumplir las exigentes normativas de emisiones de los países avanzados (EURO 6, CAFE y futuras)

El sector transporte es la mayor fuente (24%) de emisiones GEI en España

Emisiones de gases de efecto invernadero por sector de actividad en España en 2014 (MtCO₂ equivalentes, %)


Nota: No incluye las emisiones derivadas de trayectos internacionales de transporte marítimo y aéreo (1) 2/3 de los productos petrolíferos producto del refino de petróleo son destinados al transporte

Fuente Deloitte



⁽¹⁾ Z/3 de los productos petrolíteros producto del refino de petróleo son destinados al transporte (2) Incluye agricultura, ganadería, usos del suelo y silvicultura, residuos y usos no energéticos en la industria Fuente: UNFCCC; IDAE; análisis Monitor Deloitte

V. Cumplir las exigentes normativas de emisiones de los países avanzados (EURO 6, CAFE y futuras)

Limites de emisiones para turismos, g km ⁻¹						
Tipo	Año	co	HC+NO _x	нс	NO _x	PM
Vehicule	s con m	otor de o	Gasolina:			
Euro I	1992	2,72	0,97	1000	0.000	
Euro II	1996	2,20	0,50		9222	
Euro III	2000	2,30		0,20	0,15	
Euro IV	2005	1,00	-	0,10	0,08	
Euro V	2009	1,00		0,10	0,06	0,005
Euro VI	2014	1,00		0,10	0,06	0,005
Vehicuk	os con n	notor Die	esel:			
Euro I	1992	2,72	0,97	-	0.757	0,140
Euro II	1996	1,00	0,70			0,080
Euro III	2000	0,64	0,56		0,50	0,050
Euro IV	2005	0,50	0,30		0,25	0,025
Euro V	2009	0,50	0,23		0,18	0,005
Euro VI	2014	0,50	0,17	1202	0,08	0,005

V. Cumplir las exigentes normativas de emisiones de los países avanzados (EURO 6, CAFE y futuras)

Passenger

Emission Targets. Passenger cars (vehicle category M₁) must meet the following emission targets (NEDC test cycle):

- •2015: A fleet-average CO₂ emission target of 130 g/km must be reached by each vehicle manufacturer by 2015 using vehicle technology. (To meet the EU CO₂ emission target of 120 g/km, a further emission reduction of 10 g/km was to be provided by additional measures, such as the use of biofuels.)
- •2020: A fleet-average CO₂ emission target of 95 g/km must be met by 95% of each manufacturers' new passenger cars registered in 2020, and by 100% of cars from 2021 onwards.
- •2050: A fleet-average CO₂ emission target of 50 g/km

V. Cumplir las exigentes normativas de emisiones de los países avanzados (EURO 6, CAFE y futuras)

Flexibilities.

- Pooling—Several manufacturers may form a pool to jointly meet their CO₂ emission targets.
- Low volume manufacturers—Manufacturers with fewer than 10,000 new cars registered per annum may apply to the European Commission for a derogation from the specific emission targets. Several conditions apply.
- Eco-innovation—Manufacturers may apply for credits for innovative CO₂ reducing technologies which are not accounted for in the current test cycle—for example, energy efficient lights. The total contribution of eco-innovation credits is limited to 7 g CO₂/km in each manufacturers average specific target.

Excess Emissions Premium.

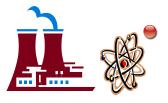
Manufacturers who miss their average CO₂ targets are subject to penalties:

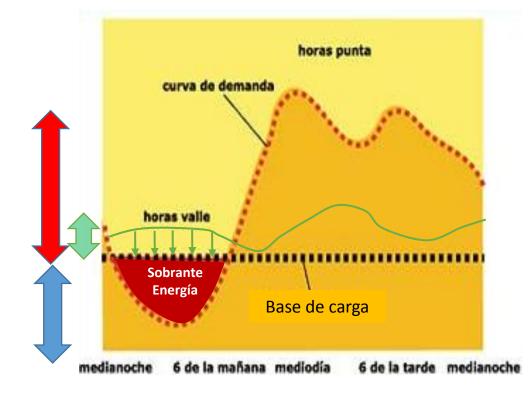
- From 2012 to 2018, the penalties are:
 - €5 per vehicle for the first g/km of CO₂
 - €15 for the second gram
 - €25 for the third gram
 - €95 from the fourth gram onwards.
- From 2019, manufacturers will pay €95 for each g/km exceeding the target.

VI. Optimizar el suministro eléctrico.

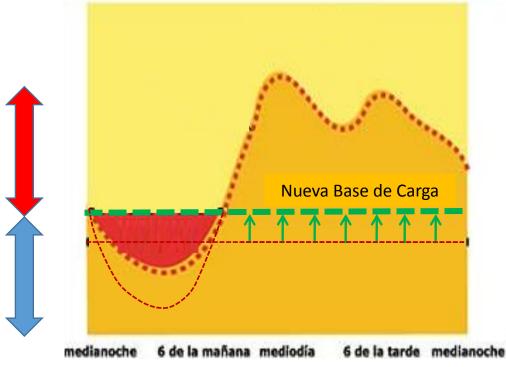
VII. Escaparse de Electricidad producida = Electricidad Consumida

VIII. Maximizar el aprovechamiento de las fuentes renovables

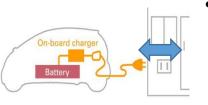



 Renovables: dependen del tiempo. Si su energía no puede ser utilizada al producirse, se desconectan.

Los grupos térmicos son los reguladores.

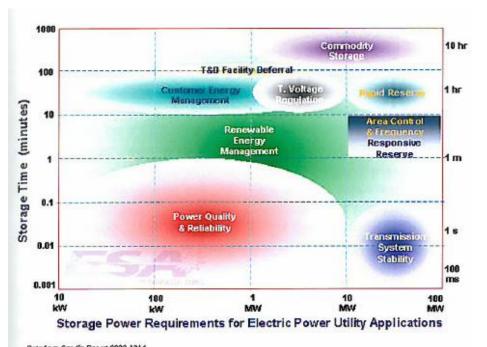


Centrales de alta eficiencia. Se adaptan mal a la demanda



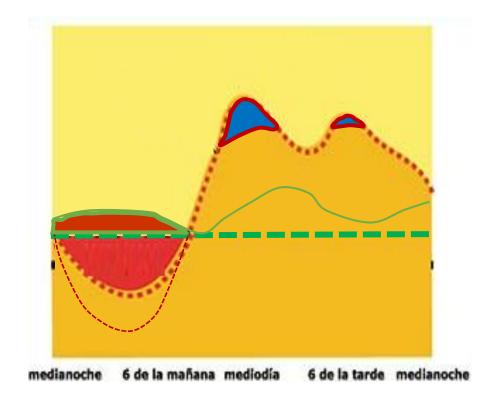
- VI. Optimizar el suministro eléctrico.
- VII. Escaparse de Electricidad producida = Electricidad Consumida
- VIII. Maximizar el aprovechamiento de las fuentes renovables
 - ¿Qué pasa si no hacemos nada más que poner coches a cargar por la noche?
 - Sin nuevas infraestructuras
 - Sin cambios en el Sistema Eléctrico
 - · Sólo enchufándolos por la noche,
 - conseguimos

- Disminuir el uso de las centrales ineficaces, que gastan mucho y contaminan más
- Se genera una nueva Base de carga que mejora la TODO EL DÍA



- VI. Optimizar el suministro eléctrico.
- VII. Escaparse de Electricidad producida = Electricidad Consumida
- VIII. Maximizar el aprovechamiento de las fuentes renovables

- En el futuro, los coches participarán en el Sistema Eléctrico suministrando energía a la red (Vehicle to grid V2G)
- O suministrándola a nivel local. (V2H)



Los beneficios de tener muchas baterías combinadas con el Sistema van de 1/10 de segundo y KW a decenas de h y cientos de MW

Data from Sandia Report 2002-1314

- VI. Optimizar el suministro eléctrico.
- VII. Escaparse de Electricidad producida = Electricidad Consumida
- VIII Maximizar el aprovechamiento de las fuentes renovables
 - En el futuro:
 - Los vehículos eléctricos almacenarán energía de fuentes renovables cuando no hay consumo.
 - Los sistemas V2G devolverán la energía en las horas de punta para ecualizar la demanda
 - Los sistemas V2H lo harán a nivel local

Razones originales. Razones posteriores

- I. Como medida contra la Contaminación, incluyendo la acústica y el calentamiento global.
- II. Liberar a la Sociedad de la extrema dependencia del Petróleo.
- III. El coste de la electricidad que se usa es una fracción pequeña del del combustible fósil.
- IV. Es la forma más eficiente de mover un vehículo.
- V. Cumplir las exigentes normativas de emisiones de los países avanzados (EURO 6, CAFE y futuras)
- VI. Optimizar el suministro eléctrico.
- VII. Escaparse de la limitación:

Electricidad producida = Electricidad Consumida

VIII. Maximizar el aprovechamiento de las fuentes renovables

La movilidad eléctrica no es una elección, es una necesidad.

CIRVE

AEDIVE

ASOCIACIÓN EMPRESARIAL PARA EL DESARROLLO E IMPULSO DEL VEHÍCULO ELÉCTRICO

Muchas Gracias Vielen Dank

Rafael del Río Director Técnico 65432 51 50 rafa@adive.es