ILF Consulting Engineers (Asia) Ltd

Optimized Hybridization and Storage in Mini Grids using Renewable Energy Sources from Solar-PV and Wind

ENGINEERING EXCELLENCE

Thai-German Technology Conference on Photovoltaics and Grid-Integration Bangkok, 23 May 2016

AHK Thailand Business Trip on Photovoltaic and Grid-Integration Frank Zimmermann - Biography

Dipl.-Ing. MBA Frank Zimmermann

2002 - 2005

2005 - 2009

2009 - 2014

since 2014

UNIVERSITÄT

KARLSRUHE (TH)

Suntech

Sustainable Power Solutions

CONSULTING

ENGINEERS

= SPS

Solar GmbH

INTERNATIONAL UNIVERSI Sales: Wholesale and Consumer

Sales- and Projectengineer Export Manager, Fürth, de

Export Manager, Wuxi, cn

Managing Director, Singapore, sg

Managing, Haslach i.K., de

TÜVRheinland CERTIFIED

Certified Qualification Valid until: 2018-03-30

ID 0000051357

Sachverständiger für Photovoltaik (TÜV) Certified Expert for Photovoltaic Equipment (TUV)

www.tuv.com

Business Development Manager South East Asia for Renewable Energies, **Senior Project Manager Photovoltaics** of ILF Asia

based in Bangkok, th

AHK Thailand Business Trip on Photovoltaic and Grid-Integration The ILF Group

■ ILF at a glance

- **1967** Year of establishment and development in a leading enterprise for engineering, consulting, and project management
- **100%** Private ownership and independent
- 2,000+ Employees worldwide
- **40+** Office locations
- 6,000+ Projects
- 100+ Countries
- **200+** Mio. € revenue

ILF Asia

- Regional presence for ASEAN in Bangkok, Thailand
- Core competencies on site: renewable energies, focus on photovoltaic and hydropower

FNGINFFRS

AHK Thailand Business Trip on Photovoltaic and Grid-Integration

ILF Service Portfolio

AHK Thailand Business Trip on Photovoltaic and Grid-Integration General Explanation

What is Hybridization?

What to hybridize:

- Diesel
- Gas
- Heavy fuel oil
- Waste-to-energy
- Biomass-to-energy

Hybrid system types:

- Stand-alone (islands)
- Mini-grid
- Micro-grid
- Remote grid

How to hybridize:

- Photovoltaic (PV)
- Wind
- Hydro power
- Battery

AHK Thailand Business Trip on Photovoltaic and Grid-Integration Market Potential and Opportunities

Diesel power generation market

Facts: 30-35GW of new large scale Diesel generators (>0.5MW) are sold in the world every year!

AHK Thailand Business Trip on Photovoltaic and Grid-Integration Market Potential and Opportunities

Potential / Opportunities for Hybridization

Most potential:

- On remote islands
- In big countries with poorly developed infrastructure

Source: Reiner Lemoine Institute, "Hybridisierungspotentiale von Dieselkraftwerken"

AHK Thailand Business Trip on Photovoltaic and Grid-Integration Market Potential and Opportunities

Potential / Opportunities for Hybridization

 High fuel subsidies: Indonesia*, Malaysia, Diesel price: 0.25-0.50 USD / I * = as of 2012/2013

Fuel subsidies
 Philippines and Thailand
 Diesel price: ~0.75 USD / I

 Fuel taxation: Cambodia, China, Myanmar, Singapore and Vietnam Diesel price: 1.00 - 1.20 USD / I

AHK Thailand Business Trip on Photovoltaic and Grid-Integration Arguments Hybridization

Why hybrid systems?

- Decreasing PV module & battery price
- ✓ Obtain less fuel imports
- ✓ No price fluctuations (like oil)
- ✓ After installation: less transport or logistic costs of fuels
- Reducing operating hours of generators
- ✓ Lower maintenance
- ✓ Increasing grid stability
- \checkmark Reducing CO₂-emissions, environmentally friendly
- ✓ No subsidies
- ✓ No subsidies
- ✓ Less fuel consumption

- > Lower system costs
- More independence
- Investment security
- > ... and less diminution
- Higher life expectation
- > Less costs, less chances of failure
- Higher acceptance of mini-grids
- > "Green"
- Less governmental expenses
- > "Natural market" for PV
- Save OPEX

■ ILF Opti-Hybrid-Tool

- Developed by ILF
- Based on Microsoft Excel VBA
- Using hourly values of load profile over one year
- Using hourly values of PV, wind and battery over one year
 - -> Very flexible tool for new or existing power plants!

Introduction of ILF Opti-Hybrid-Tool

- Input data
- Sensitivity analysis
- Output: technical & financial results

■ ILF Opti-Hybrid-Tool

Input data

- Irradiation (location)
- Diesel generator settings
- Load profiles

□ For verification

- PV generator settings
- Battery system settings
- Economic parameters
- Grid stability parameters
- Sensitivity analysis

AHK Thailand Business Trip on Photovoltaic and Grid-Integration Challenges

ENERGETIC RESULTS - Grid stability considerations (without battery)

Reliable Energy Management System to ensure grid stability is key

> Sufficient Primary / Spinning reserve (from Fuel generators) required at any time

Sizing of the PV power plant

Proper sizing of the PV power plants allows reaching an economic optimum

of the overall PV/Diesel hybrid system

Technical Output

Yearly PV fraction / Excess of PV energy

■ ILF Opti-Hybrid-Tool

□ Financial output

LCOE (Levelized cost of electricity) for every energy source and for the overall hybrid system

□ Revenue from savings

- Fuel cost reduction
- Avoided diesel O&M
- Later replacement

□ Financial factors of hybrid system

- NPV (net present value)
- IRR (internal rate of return)
- Benefit/cost ratio
- Payback period

Levelized cost of electricity							
		Base case	100% equity	30% equity			
LCOE of Diesel generators	[EUR/kWh]	0,536	0,587	0,595			
LCOE of PV power	[EUR/kWh]	-	0,146	0,164			
LCOE of Wind power	[EUR/kWh]	-	-	-			
LCOE of Renewable power	[EUR/kWh]	-	0,164	0,182			
LCOE of the hybrid system	[EUR/kWh]	-	0,358	0,371			

Financial factors of the hybrid system (incl. financing costs)

Avoided diesel O&M and replacement

		100% equity 30% equity
NPV	[kEUR]	28.190,0 23.757,5
IRR	[%]	29,39% 24,57%
Benefit/cost ratio	[1]	2,99 2,73
Payback period	[a]	4,23 5,76
Revenue from savings		
		SUM NPV
Fuel cost reduction	[kEUR]	104383,4 38516,6

[kEUR]

3804,3

9325,8

LIF Opti-Hybrid-Tool

Robust-Check

3 variability constraints are taken into account in the simulation to allow checking the robustness and reliability of the designed systems by calculating Grid stability indicators (probability analysis)

Grid stability indicators (worst case scenarios)													
		Ensured stability on the year			Annual probability of occurrence			Probability of network instability on the year					
		Base Case Calculated scenario				Base Case	Calculated scenario		Base Case		Calculated scenario		
Ĕ	Case 1 Fast RE dropdown			\triangle	92%			Δ	4,2%			\triangle	0,34%
eve	Case 2 Startup of biggest load	Δ	97%	Δ	95%	\diamond	8,3%	\diamond	8,3%	Δ	0,27%	\triangle	0,43%
-9	Case 3 Failure of largest generator	\diamond	59%	\diamond	63%	\bigcirc	0,1%	\circ	0,1%	•	0,03%	\bigcirc	0,03%
Sir	Total									Δ	0,29%	Δ	0,79%
월 2	Case 1+2			Δ	85%			0	0,3%			0	0,05%
iH a	Case 1+3			\diamond	0%			•	0,0%			\bigcirc	0,00%
20	Case 2+3		0%	\diamond	0%	0	0,0%	0	0,0%	\circ	0,01%	\bigcirc	0,01%

page 15

Results after simulation

■ ILF Opti-Hybrid-Tool

- Sensitivity analysis
 - Variation of PV capacity
 - Variation of wind capacity
 - Variation of battery capacity
 - -> Technical-economic design optimization

Photovoltaic / Diesel Hybrid Power Plant, UAE

page 17

■ 8 PV interconnected and hybrid power plants, Senegal (1)

CONSULTING

■ 8 PV interconnected and hybrid power plants, Senegal (2)

Client:	SENELEC / KfW						
Type of work:	PV and PV / Diesel / Battery power plants						
Time frame: Data:	 2014 - ongoing 1 grid connected PV (15 MWp) 7 PV/Diesel/Battery hybrid systems for 7 Remote Cities from 5.000 to 50.000 inhabitants PV power: 26 MWp Battery capacity: 2.4 MWh Diesel generators: 3.6 MW 						
Services:	Feasibility studies:						
	Detailed socio-economic site survey						
	 Energy demand analysis of the 7 cities (load profile and future evolution until 2026) 						
	Site selection and evaluation for the new power plants						
	Detailed Technical and economic Feasibility Study of each plant						
	Optimized sizing of the power plants (based on the LCOE)						
	Conceptual design of all 8 power plants, incl. EIA study						

■ 166 PV hybrid power plants, Maldives (1)

- Client: STELCO , FENAKA, financed by ADB
- Setup: JV of ILF Consulting Engineers GmbH, Munich with GOPA International GmbH
- **Time frame:** 2016 2020, status: fixed order

■ 166 PV hybrid power plants, Maldives (2)

□ Implement hybrid systems and mini-grids on 166 islands

Data:

□ Technology: PV, battery storage, diesel generators

Services:

- Feasibility study
- Conceptual design
- Tender design
- Site and construction supervision
- Commissioning
- Project Management

AHK Thailand Business Trip on Photovoltaic and Grid-Integration Quick Assessment – Input Data

Application for:

- IPPs / Utilities
- Hotels / Resorts
- Villages / Communities / Islands / Remote Places
- Telecommunication
- NGOs / International Aids

Typical sizes:

• Generator / Grid size of 1...50 MW

Initial calculations to identify the feasibility of project – Input Data

- Location, available area
- Load curve, ideal case: hourly values over one year, biggest load/motor
- Diesel price incl. transportation costs, diesel generator setting, number
- Discount rate / inflation rate / economic lifetime of the plant

AHK Thailand Business Trip on Photovoltaic and Grid-Integration Quick Assessment – Results

Initial calculations to identify the general feasibility of project - Results

Energetic Result

- share of diesel / PV / wind / battery [MWh]
- renewable energy fraction [%]
- consumption and reduction of fuel oil [%]

Grid Stability

• Annual probability of network instability on single / multiple events [%]

Financial Results

- LCOE for overall hybrid system [\$\$\$/kWh]
- IRR [%]
- payback period [a]

Optimized Hybridization and Storage in Mini Grids using Renewable Energy Sources from Solar-PV and Wind **Thank you for your attention!**

www.ilf.com

ENGINEERING EXCELLENCE

AHK Thailand Business Trip on Photovoltaic and Grid-Integration, 23 May 2016

CONSULTING