

Development of Metal Powder for A.M. Applications

Additive Manufacturing Forum, 2nd/3rd of July 2019, Tokyo

Dr. Martin Dopler, Managing Director Metalpine GmbH | Kratkystr. 2 | A – 8020 Graz dopler@metalpine.at | Tel. +43 680 2185 207

- 1. Introduction
- 2. Gas Atomization
- 3. Requirements on Metal Powders for AM Applications
- 4. Conclusions / Solutions

hightech metal Group - Company Structure as of 2019-03-31

Development of Metal Powder for A.M. Applications 1. Introduction

Grinding: Irregular Powders

Inert Gas Atomization: Spherical Powders

Direct Reduction: "Spongy" Powders

[A study of the impact of reduction conditions on molybdenum morphology, 19th Plansee Seminar]

- 1. Introduction
- 2. Gas Atomization
- 3. Requirements on Metal Powders for AM Applications
- 4. Conclusions / Solutions

Hall (1917, 1919)

Internal mixing atomization:

Basczcuk (1989)

Wentzell (1984)

AP&C

ALD

Energy efficiency of Gas Atomization Processes:

 $\eta_{atomization} = \frac{e_{powder}}{e_{atomization}} = \frac{\sigma S_m}{e_{gas} + \Delta h_{gas} + \Delta h_{melt}}$

metal melt		aluminium	steel
melt superheat	[°C]	215	215
atomization gas temperature	[°C]	20	400
atomization gas pressure	[bar]	16,6	10
GLR (gas to liquid ratio)	[-]	8,49	1,10
specific surface area	[m²/kg]	200	20
surface tension	[N/m]	0,9	1,87
surface energy	[kJ/kg]	0,18	0,0374
gas compression energy	[kJ/kg]	236	194
gas heating energy	[kJ/kg]	0	382
melting energy	[kJ/kg]	1342	1013
total energy	[J/kg]	3349	1647
energy efficiency	[-]	0,0054%	0,0023%
		A CAR	XXX

- 1. Introduction
- 2. Gas Atomization
- 3. Requirements on Metal Powders for AM Applications
- 4. Conclusions / Solutions

Powder Bed Fusion

I. Spherical Particles (?):

Why spherical?

- Good Flowability
- Low Specific Surface Area \rightarrow Less Surface Impurities (Oxygen, Nitrogen, etc.)
- Better Predictable

But: Melting Rate is Higher for Irregular Powders

Metalpine Spherical Powder (CuCr1Zr)

Non Ferrum Ground Powder (Mg)

II. Satellite-Free / Agglomerate-Free Powders:

- Better Flowability, Predictability
- Less Pores in the Built Part
- Evaporation Rate is Lower

III. Low Oxides, Nitrides, "no" Impurities, no Cross Contamination

IV. Narrow Particle Size Distribution

- 1. Introduction
- 2. Gas Atomization
- 3. Requirements on Metal Powders for AM Applications
- 4. Conclusions / Solutions

Development of Metal Powder for A.M. Applications 4. Conclusions / Solutions

- \rightarrow Powder production via gas atomization is an old technique (> 100 years)
- \rightarrow Energy efficiency is really, really bad
- \rightarrow Contemporary requirements on powders are
 - Spherical Particles
 - Satellite-Free / Agglomerate-Free Powders
 - Low Oxides, Nitrides, "no" Impurities
 - Narrow Particle Size Distribution
- → These requirements cannot easily be accomplished by standard production facilities

Development of Metal Powder for A.M. Applications 4. Conclusions / Solutions

Metalpine Powder Production Process:

- \rightarrow Crucible-free Atomization Process
- \rightarrow Argon Atomization
- → Low Oxides, Low Nitrides (Classifying, Screening and Packaging under Argon)
- \rightarrow Contamination-free Process
- \rightarrow Perfectly clean Production Environment
- → Spherical Powders (Perfect Flowability)
- → Reproducible Quality, even at Minimum Sample Sizes (>2kg)
- \rightarrow Narrow Particle Size Distribution
- \rightarrow Particle Sizes Adjustable to Customer Requirements
- \rightarrow A Multitude of Materials is Available

Development of Metal Powder for A.M. Applications 4. Conclusions / Solutions

Materials (Examples):

- Copper Alloys (OF-Cu, CuCr1Zr, CuNi2SiCr)
- Titanium Alloys (Ti1, Ti5, Ti23)
- Molybdenum 99,9%
- Stainless Steels, e.g. 316L, 17-4PH, 1.4317
- Tool Steels: e.g. 1.2343
- Nickel Based: IN625, IN718

Particle Sizes:

- 20-63µm
- 15-45µm
- 10-30µm
- <15µm
- Others on request

Perfecty Clean Production Environment in the South-East of Austria, Graz

Location:

spaceone | Kratkystr. 2 8020 Graz | Austria Tel. +43 680 2185 207 dopler@metalpine.at

htm Japan Co., Ltd.

No.2 Shimazai Building 2-40 Kandajimbou-chou, Chiyoda-ku Tokyo 101-0051, Japan Tel.: +81-3-3512-2581 <u>y.kubota@hightech-metal-japan.com</u>

Spherical Metal Powders:

Metalpine GmbH Kratkystrasse 2, A-8020 Graz, Austria Tel.: +436802185207 dopler@metalpine.at

Magnesium Alloys, Powders, Chips, Granules, Ingots

non ferrum GmbH Bürmooser Landesstrasse 19 5113 St.Georgen bei Salzburg, Austria Tel.: +43 6272 2919 20 p.schaeffler@nonferrum.at