

Energetic building simulation integrating renewable energies and conventional heat generators

Dr. Andreas Straub

International Sales, Business Development & Training

a.straub@etu.de

+49 160 989 729 34

www.etu-software.com

XXII Simpósio Luso-Alemão Eficiência Energética, 20.10.20

The company

ETU Software has been developing technical and CAD software since 2002 for the fields of energy efficiency, building services and HVAC planning for new buildings and the renovation of old buildings.

In the field of energy consulting, ETU Software is today the market leader in Germany (70% market share).

The data acquisition of manufacturer data for use in calculation software is another of the services offered by ETU Software.

Subsidaries in Germany, Austria & Spain Hottgenroth Group

Hottgenroth Software GmbH &Co. KG was founded in 1996 by Karl-Heinz Hottgenroth. In 2002 Hottgenroth took over ETU Software GmbH.

Nowadays, further subsidaries strengthen the headquarter in Cologne.

HOTTGENROTH & TACOS GmbH in Münster is a further subsidary and a specialist in sophisticated design of non-residential ventilation systems.

ETU Software GmbH is the trading partner for foreign business within the **Hottgenroth Group**.

HottCAD und exchange of data

BIM-Methodology

HottCAD is an integrated CAD solution that has been specially developed for the requirements of technical building calculations. All modules work with data from the common 3D model and enrich it if required.

IFC files can be imported and exported.

Plug-ins allow 3D models from other CAD programs

can be used for retracing the building in **HottCAD**.

like Autodesk Revit or Nemetschek Allplan.

Alternatively, planning documents such as image files, DWG/DXF and PDF Hott CAD

Thermal building simulation and plant scheme simulation including solar energy and geothermal energy (optionally with boiler and CHP)

Parameters of the thermal building simulation:

- Building components
- Climate data
- Usage profiles
- Shading
- Demand profiles
- Zones for same profiles

XXII Simpósio Luso-Alemão Eficiência Energética, 20.10.20

FTU-Simulation - Results

Thermal energy balance of the building

Heating energy demand:	633,8 kWh
Heating energy supply:	200,9 kWh
Cooling energy demand:	1559,4 kWh
Cooling energy supply:	1267,7 kWh
Heat emission from devices and lighting:	170,7 kWh
Total energy supply:	1639,3 kWh (198,7 kWh/m²)

Excess and under temperatures:

Max, emitted heating power:

Max. emitted cooling power:

Operating hours:

Emitted dimensioning heating power:

Emitted dimensioning cooling power:

Maximum temperature overrun:	3 °C
Hours of excessive temperature (Internal air):	950 h
Degree hours of excessive temperature (Operative):	1719,8 °h

Hours of occupancy: 3285 h

XXII Simpósio Luso-Alemão Eficiência Energética, 20.10.20

Energy-efficient building technologies using renewable energies in Portugal

790 h

672,3 °h

Cooling to surface Ventilation 2,6 °C Maximum temperature undercut:

Heat losses (2451,5 kWh)

1.267.7 Cooling

Hours of under temperatures (Internal air):

Degree hours of under temperatures (Operative):

189.2 to surface

0,91 kW (27. January, 17-18 h)

0,82 kW (12.February, 17-18 h)

2,39 kW (31.August, 12-13 h)

2.39 kW (31.August, 12-13 h)

475 h (heating), 2980 h (cooling)

994.6 Ventilation

Results:

- Heat demand
- **Cooling Demand**
- **Devices**
- People
- Solar load
- Lighting
- Air infiltration
- Surface heat output
- **Ventilation**

Simulation of the annual load duration curve

		manual input	Maximum load [kW]	Moment	Maximum specific load [W/m²]	Annual energy demand [kWh/a]				
leating			15,54	13.01. (05:30)	114,53	14839,47				
Hot water Heating, Hot water (combined)			0,93	01.01. (07:30)	6,83	2968,06				
			15,94	13.01. (05:30)	117,46	17807,53				
Cooling	ing						3,13	3,13 20.08. (00:30)	23,09	487,27
Electrical Demand			0,97		7,17	5000				
-			An	ual load duration curve						
 ✓ Heating										
Hot water	16,5									
Heating, Hot water (combined)	16									
	15									
Electrical Demand	14,5									
	14					·····				
	13,51									
	12,5									
	12									
	11									
	10,5									
	10									
	9,5									
	8,5									
	a 7,5									
	6,5									
	6									
	5,5									
	45									
	4									
	3,5									
	3									
	2									
	1,5									
	C,U									
	-0.5									

ETU-Simulation Silber CAD-Software COURTS

XXII Simpósio Luso-Alemão Eficiência Energética, 20.10.20

Plant configuration

XXII Simpósio Luso-Alemão Eficiência Energética, 20.10.20

PV-Simulation

Manufacturer-independent simulation software for the planning and design of photovoltaic systems

Software for time-saving measurement of roof areas, facades, windows and doors using a digital image file. The determined areas can be transferred to the PV-Simulation programme for further calculations.

Results:

- Forecasts for yield and profitability
- Dimensioning of the PV system including battery
- Optimisation of the plant to the usage behaviour
- Project report for consulting and documentation

PV-Simulation

Results

Energy-efficient building technologies using renewable energies in Portugal

PV-Simulation 3D PLUS

CAD-Software ETU-BIM4.0

simulati

System hydraulics / Plant schemes (1)

XXII Simpósio Luso-Alemão Eficiência Energética, 20.10.20

System hydraulics / Plant schemes (2)

XXII Simpósio Luso-Alemão Eficiência Energética, 20.10.20

Manufacturer data

Digital product data for dimensioning, simulation and quotation

HOTTGENROTH SOFTWARE	ETU TAC	CØS	BIM	Partner
				Stand: 1.10.2019
ABA BEUL	A AFRISO	Viasor Vierre Systeme	alpha innotec	🕜 aquatechnik"
🛚 arbonia	ATAG	BELIMO	BEMM Quelliäts-Heiskörper	S Biral
BOSCH	HEIZUNG	Buderus	GCALEFFI Hydronic Solutions	
Centrolherm	соумо	Danfois	DéLonghi) Living innovation	C Dimplex
Düker	elco 📟	FRANKISCHE	frese	gababrandschulz
GEBERIT	+GF+ JRG		GR	GRUNDFOS X
G	Helios 💥	HELIOTHERM De Warmpource	HENRAD Der Heizkörper	⊘Heiz °
Honeywell	Hoval	(hnumer)	Hydronio Enginastrig One week	<i>∀JUNKERS</i>
KAMPMAN Genau mein Klima.	(A) SYSTEMKAN-therm	KERMI	kieback@peter	2 Lindner

LITHOTHERM*	LTM	meibes Efferno Ehrpotochik		♦NIBE	
	oventrop	Panasonic		Example 1	
Prolux		CREHAU	∂ VOGEL®NOOT		
meibes Eficiete (nergetactral	ROTEX	samson	SANHA Passt immer.	Schlüter Systems	
SIEMENS	Simplex Flow of Incovation	< Stelrad	STIEBEL ELTRON Technik zam Wahifühlen	at rawo	
🏀 system air	taconova taconova	tecalor Wiles wild grav	TECE: Intelligente Haudesheite		
uponor	WVaillant	VALLOX HOME of FRESH AIR	victaulic	viega	
VIESMANN	-weishaupt-	Westaflex	cuprotherm * Heizes & Kältien	WELF	
zehnde	(ZEWOTHERM)				
www.vdi3805-h	im de		— VD	I 380 5	
111111111111111111111111111111111111111	IIIIIIII		L		-

ETU-Simulation - Results

Energy Balance Plant Technology

XXII Simpósio Luso-Alemão Eficiência Energética, 20.10.20

ETU-Simulation – Thermal time series

Time series for 1 year with hourly resolution for any zones or rooms

XXII Simpósio Luso-Alemão Eficiência Energética, 20.10.20

ETU-Simulation – Plant time series (1)

Time series for 1 year with hourly resolution for the chosen system

XXII Simpósio Luso-Alemão Eficiência Energética, 20.10.20

ETU-Simulation – Heating time series (2)

Time series for 1 year with hourly resolution for the chosen system

XXII Simpósio Luso-Alemão Eficiência Energética, 20.10.20

XXII Simpósio Luso-Alemão Eficiência Energética, 20.10.20

Building simulation for energy concepts and renewable energies

Range of ETU-Simulation features	STANDARD	PREMIUM	PLATINUM
Building simulation according to VDI 6007	\checkmark	\checkmark	
Protection against summer heat acc. to DIN 4108	~	\checkmark	
HottCAD/3D	\checkmark	\checkmark	
BIM interfaces (IFC, Allplan, Revit and many more)	\checkmark	\checkmark	
CHP and CCHP simulation		~	
Heat pump simulation		\checkmark	
Photovoltaic simulation		\checkmark	
Solar thermal simulation		\checkmark	
Cooling load calculation acc. to VDI 2078 and VDI 6007			
Price overview	STANDARD	PREMIUM	PLATINUM
Monthly fee	59,– €*	89,– €*	99,– €*

• Future-oriented planning with renewable energies

 Digital twin for energy optimisation in new and existing buildings

Calculate profitability of energy measures

* VAT not included. The minimum duration of the contract is 24 months. All details regarding the contractual terms will be sent in written form for the conclusion of the contract

XXII Simpósio Luso-Alemão Eficiência Energética, 20.10.20

Energy-efficient building technologies using renewable energies in Portugal

GetSolar Professional

Simulation software for dimensioning solar thermal systems

- Worldwide climate data available
- Calculation of sun position, instantaneous power, standstill temperature etc
- Solar backup heating and domestic hot water

ETU Software GmbH

CAD-based software for energy simulations

Thank you for your attention!

Contact me for more information and to request free educational licences. Professionals can purchase directly in our webshop at <u>https://shop.etu.de</u>

Dr. Andreas Straub International Sales, Business Development & Training a.straub@etu.de +49 160 989 729 34 www.etu-software.com

XXII Simpósio Luso-Alemão Eficiência Energética, 20.10.20