

PNE AG

Conversion and storage of electric power Warsaw, June 21th, 2018

TABLE OF CONTENTS

- 1. Who we are
- 2. Aktivities in Poland
- 3. Conversion and storage
- 4. Hydrogen production with wind & solar
- 5. Hydrogen market ready?
- 6. Conclusion and outlook

WHO WE ARE

WE ARE A LEADING DEVELOPER OF WIND ENERGY PROJECTS...

 PNE Group, consisting of the companies PNE AG and WKN AG, is a leading wind farm developer located in Northern Germany

>2,600 MW realised onshore

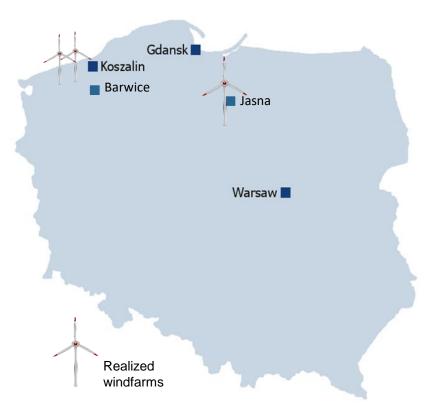
 No 2 player in operations & management in Germany with >1,500 MW under management

> > € 9bn euros of investment done or initiated

Active in 13 countries
on 3 continents

... WITH A STRONG MARKET POSITION – NATIONAL AND INTERNATIONAL

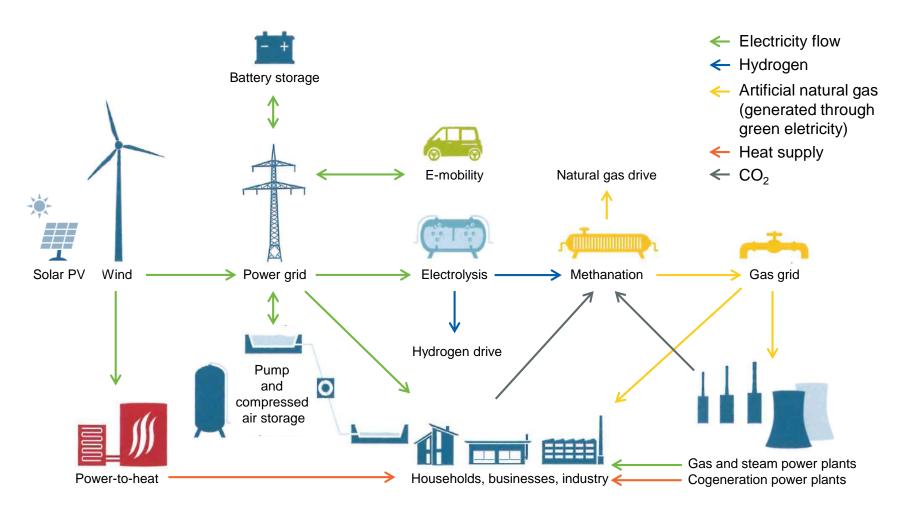
Germany's most successful project



ACTIVITIES POLAND

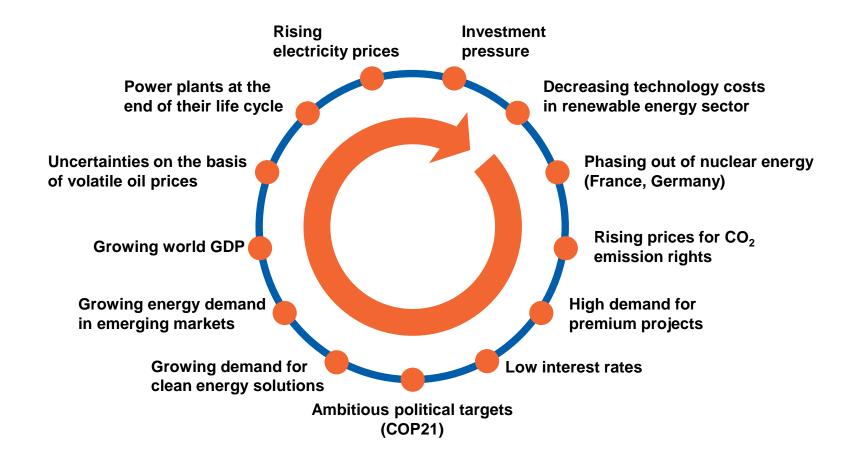
WE HAVE A STRONG PARTNERSHIP WITH A LOCAL PLAYER

- WKN AG and the polish consulting engineer AOS have founded the joint venture Sevivon in 2007. Today offices in Koszalin, Gdansk
 >151 MW realised onshore (Karcino, Bardy, Linowo)
- Today two wind projects are at a late stage of development and are planned to be constructed in 2019 and 2020.
 >174 MW ready to built (Barwice, Jasna)
- Poland is a very interesting market for renewable energies with a large growth potential.
- WKN AG will continue to push project development activities in Poland.



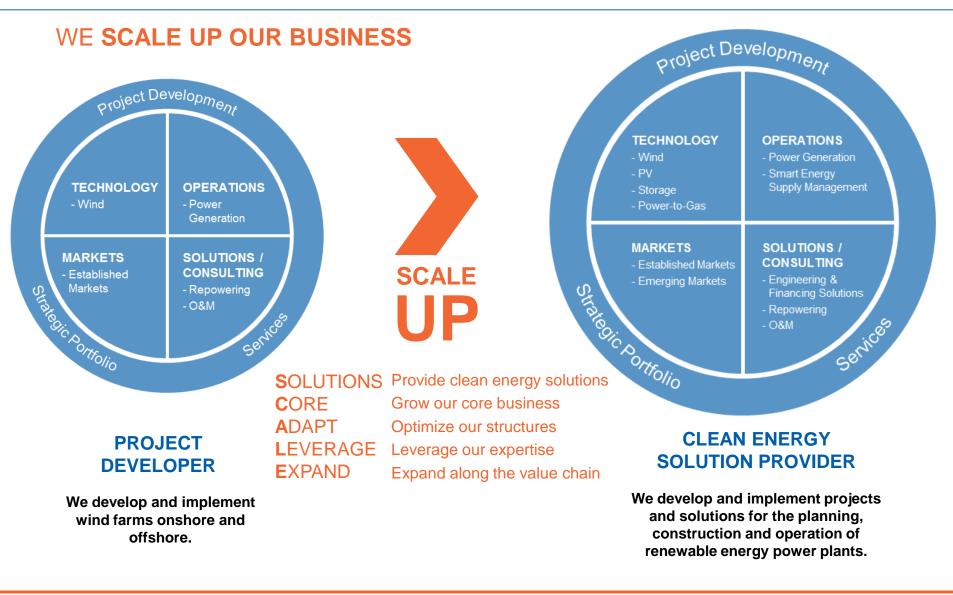
Market changes create challenges...

...as well as **huge** opportunities!



MARKETS BECOME MORE INTEGRATED...

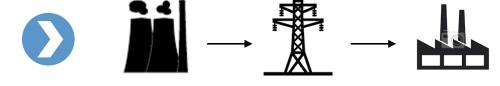
...BUT GROWTH DRIVERS ARE INTACT



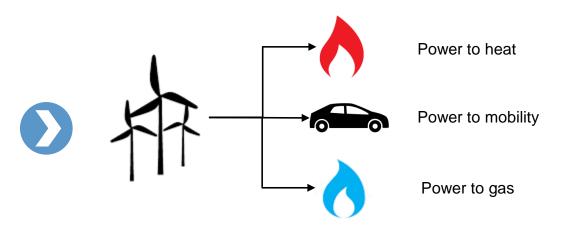
OUR ANSWER TO THE MARKET CHANGES:

We are adapting to become a **Clean Energy Solution Provider**

STRATEGY

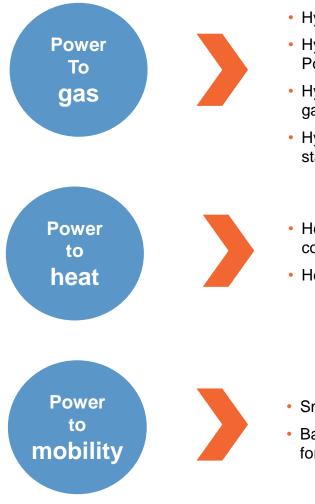

CONVERSION AND STORAGE

WHAT DOES CONVERSION AND STORAGE MEAN?


Energy Systems: TODAY

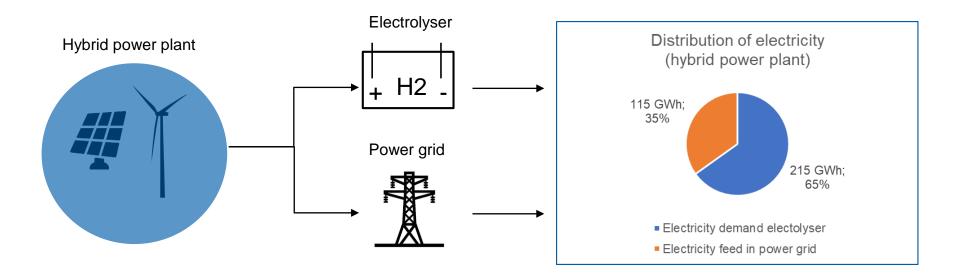
- Large central power generation
- Distribution of electricity only via power grid leads to massive problems in the feed-in of fluctuating energy (e.g. Wind)
- Disconnecting renewable energy sources (in case of overload) leads to a great waste of energy

Energy Systems: CONVERSION & STORAGE


- Small decentralized power generation
- Distribution of electricity is significantly simplified by conversion into other energy carrier (e.g. heat, gas, mobility)
- Large fluctuations of wind and solar generated power can be compensated by conversion and storage in other energy carriers.

CONVERSION AND STORAGE

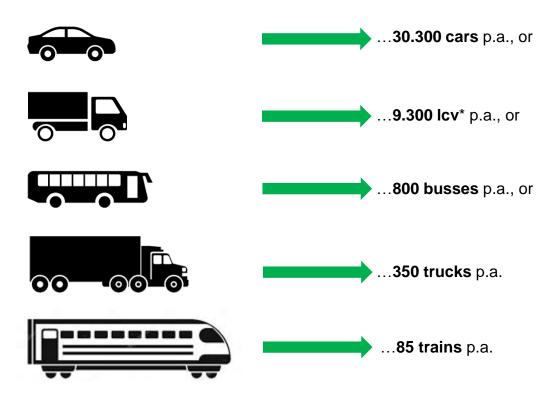
COUPLING DIFFERENT SECTORS CREATES NEW BUSINESS MODELS



- Hydrogen in mobility: fuel cell vehicles particular in passenger and heavy load traffic.
- Hydrogen in chemical industry: Polymer production especially Polyethylene, Polypropylene, Polyoxymethylene
- Hydrogen in heat supply: Injecting hydrogen into the natural gas grid and use it in the gas heating.
- Hydrogen for reconversion into power: Gas power plants; combined heat and power stations.
- Heat supply: Injecting into heating grid for heating households, commercial companies, industrial facilities.
- Heat to reconversion into power -> "Power to heat to power" -> heat generators.

- Smart charging: Charging for a large number of vehicle batteries
- Balancing power: Electric vehicles can provide their charging capacity on the market for balancing power

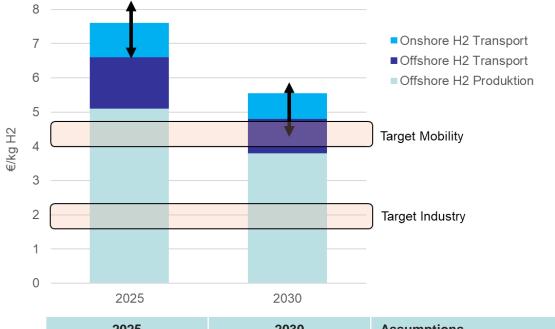
DECENTRALIZED HYDROGEN PRODUCTION WITH WIND & PV POWER



Installed capacity		Produced electricity		Electrolyser output	
electrolyser	35,0 MW	wind	300 GWh	hydrogen production	5.205 t
wind	130,0 MW	solar	30 GWh	efficiency	80%
solar	30,0 MW	total	330 GWh		

POWER TO GAS – APPLICATIONS IN MOBILITY

5,000 tons of hydrogen can power the following mobility applications:



Assumed driving performance p.a.: car = 15.000 km; lcv = 21.500 km; bus = 45.000 km; truck = 100.000 km Assumed hydrogen demand: car = 1,1 kg/100km; lcv = 2,5 kg/100; bus = 14 kg/100km; truck = 15 kg/100km lcv = light commercial vehicle Source: Shell, hydrogen study, Shell Deutschland Oil GmbH, Hamburg 2017

POWER TO GAS

WHEN WILL HYDROGEN BECOME COST EFFICIENT?

2025	2030	Assumptions	
750 €/kW _{el}	500 €/kW _{el}	CAPEX Electrolyser	
4,500 h	4,500 h	Full Load Hours	
55 kWh _{el} /kg H2	52 kWh _{el} /kg H2	Efficiency	
4,00 €/MWh	4,00 €/MWh	Electricity Costs (Offshore)	
10%	7%	WACC	

Source: Department of Offshore Windpark Development , PNE AG, 2017

Results:

- Long term cost efficiency for hydrogen can only be achieved through eonomies of scale -> Offshore wind is highly suitable.
- Starting 2025, large scale applications will make it possible to achieve the cost targets in mobility.
- In the long run, the business model of hydrogen production will work for offshore and onshore wind

WHEN WILL HYDROGEN BE AVAILABLE FOR THE MOBILITY SECTOR?

More than 5,000 hydrogen refueling stations have been announced global Latest announced investments in hydrogen refueling stations (selected countries) Current global announcements1 ~15.000+ Scandinavia: 5.300 H2Mobility UK: up to 150 up to 1,150 HRS by 2020 HRS by 2030 South Korea: 310 HRS by H2Mobility ~3.000+ 2022 Germany: up Northeastern to 400 HRS 2,800 US: 250 HRS by 2023 by 2027 California: Other Europe: Japan: 900 China: >1,000 100 HRS by ~820 HRS by HRS by 2030 HRS by 2030; 1,100 2020 2030 > 1 million **FCEVs** 375 2017 2020 2025 2030

400 stations in Germany

1 Announcements for shaded countries/regions: California, Northeastern US, Germany, Denmark, France, Netherlands, Norway, Spain, Sweden, UK; Dubai; China, Japan, South Korea

2 Equivalent number of large stations (1,000 kg daily capacity)

SOURCE: Air Liquide: Honda: Hvdrogen Mobility Europe: H2Mobility: E4tech: NREL: web search

Source: Hydrogen Council, Hydrogen scaling up (November 2017)

CONCLUSION AND OUTLOOK

- The Energy Transition in Europe is turn-around for the electricity sectors well as the heat, mobility and industry sector
- Coupling energy generation across multiple other sectors accelerates the integrated Energy Transition in Europe.
- Coupling sectors enables an independence of power grid expansions.
- The production of hydrogen makes it possible to link the energy transition in Europe with the world's growing demand of hydrogen.
- Economy of scale effects will provide the required cost efficiency for an inexpensive supply of hydrogen.
- Cost efficiency targets for hydrogen will be reached sooner than initially expected.

THANK YOU FOR YOUR ATTENTION