AUTOMATED CONSTRUCTION OF LARGE-SCALE THERMAL STORAGE TANKS

FOR INDUSTRY AND DISTRICT HEATING NETWORKS

Online-Event: Renewable Heat, Denmark 15.06.2021

LIPP Systems & Applications

Potable Water

Waste Water Treatment

Anaerobic Technology

Liquid Storage Tanks

Gas Accumulators & Silos

Thermal Storage Tanks

Application of Thermal Storage Tanks in District Heating Networks

- Time-difference between heat-production and use e.g. flexible biogas production, heat-power plants etc.
- Energy Storage of excessive heat

- Economic utilization of waste-heat
- Power-to-Heat solutions: Electricity generated by wind turbines or photovoltaic that cannot be fed into the grid is used to heat-up water -> ENERY STORAGE similar to pumped storage power plant

Advantages & Specialties of LIPP Thermal Storage Tanks

- Improved temp.-levels (cold-hot separation) due to height-diameter ratio
- Flexible / adjustable Diameter / Height
- Realization of huge volume due to special LIPP tank construction technology
- Reduced Heat-Loss due to customized insulation of wall & roof
- Oxygen-impermeable membrane instead of Nitrogen-Injection
- Incl. All safety systems
- > Additional, customizable components internal & externally
- Short construction times and same quality world-wide
- Low maintenance costs, no operating costs.

Project Italy – General Information

Municipal District Heating Network -

Project Description

The city in northern Italy has the oldest and largest district heating network in Italy.

There are already 2 x 1000 m³ pressure thermal storage tanks existing with approx. 140 MWh.

To increase the heat storage capacity, another atmospheric pressure Thermal Storage Tank from LIPP GmbH with a capacity of 5200 m³ was built to provide approx. 220 MWh.

Together with further storage tanks at other locations the capacity is planned to increase to approx. 550 MWh.

LIPP Thermal Storage Tank – Project Italy

District Heating Network

Atmospheric Pressure – Thermal Storage Tank –

Fank Diameter:	19,50 m
Fank Height :	20,00 m
Filling Level :	17,42 m
Fotal Volume:	5200 m ³
Year of Construction:	2019
nstallation Time:	ca. 15 Weeks
Thermal Power:	220 MWh
	55 MW for 4 hours
	4 cycles / day
-low rate:	1500 m³ / h
lemperature:	97 °C

Installation Process -

References

Italy 2 Volume 1.500 *m*³ D=10,50m; H=20,00m; FH=17,33m Italy 3 Volume 3.050 *m*³ D=15,60m; H=18,00m; FH=15,96m Flow rate: 750 m3/h, Max. 4 cycles / day Italy 4 Volume 2.200 *m*³

D=15,00m; H=15,50m; FH=12,45m

Germany, Baden-Württemberg Volume 5000 m^3 D=19,50m; H=18,75m; FH=17,75m Germany, Rostock Volume 820 m^3 D=9,50m; H=13,00m; FH=11,50m

Germany, Weiden Volume 2000 m^3 D=12,00m; H=20,00m; FH=18,00m

Gargelen, Switzerland Volume 1450 m^3 D=10,00m; H=19,45m; FH=18,40m

Thank you for your attention!

LIPP GmbH

Volker Staffendt – International Sales

Industriestraße 27 73497 Tannhausen Deutschland

info@lipp-system.de v.staffendt@lipp-system.de

> Tel.: +49 7964 9003-35 Fax: +49 7964 9003-27 www.lipp-system.de

